分析 (1)根據(jù)平行四邊形的性質(zhì)得出∠A=∠C,AD∥BC,求出∠DEA=∠DFC,根據(jù)相似三角形的判定推出即可;
(2)設(shè)CF=x,F(xiàn)B=2x,則BC=3x,設(shè)EB=y,則AE=3y,AB=4y,根據(jù)相似得出$\frac{3y}{3x}$=$\frac{x}{4y}$,求出x=2y,由勾股定理得求出DF=2$\sqrt{3}$y,可得y,易得AB.
解答 (1)證明:∵CD是⊙O的直徑,
∴∠DFC=90°,
∵四邊形ABCD是平行四邊形,
∴∠A=∠C,AD∥BC,AB∥CD,
∴∠ADF=∠DFC=90°,
∵DE為⊙O的切線,
∴DE⊥DC,
∴DE⊥AB,
∴∠DEA=∠DFC=90°,
∵∠A=∠C,
∴△ADE∽△CDF;
(2)解:∵CF:FB=1:2,
∴設(shè)CF=x,F(xiàn)B=2x,則BC=3x,
∵AE=3EB,
∴設(shè)EB=y,則AE=3y,AB=4y,
∵四邊形ABCD是平行四邊形,
∴AD=BC=3x,AB=DC=4y,
∵△ADE∽△CDF,
∴$\frac{AE}{AD}=\frac{CF}{CD}$,
∴$\frac{3y}{3x}=\frac{x}{4y}$,
∵x、y均為正數(shù),
∴x=2y,
∴BC=6y,CF=2y,
在Rt△DFC中,∠DFC=90°,
由勾股定理得:DF=$\sqrt{{DC}^{2}{-CF}^{2}}$=$\sqrt{{(4y)}^{2}{-(2y)}^{2}}$=2$\sqrt{3}$y,
∵DF=4$\sqrt{3}$,
∴y=2,
∴CD=AB=4y=4×2=8.
點評 本題主要考查了平行四邊形的性質(zhì),相似三角形的性質(zhì)和判定,勾股定理的應(yīng)用,綜合運用性質(zhì)進(jìn)行推理和計算是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com