分析 (1)延長ED交AG于點H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運用等量代換證明∠AHE=90°即可;
(2)①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當(dāng)∠OAG′=90°時,α=30°,α由90°增大到180°過程中,當(dāng)∠OAG′=90°時,α=150°;
②當(dāng)旋轉(zhuǎn)到A、O、F′在一條直線上時,AF′的長最大,AF′=AO+OF′=$\frac{\sqrt{2}}{2}$+2,此時α=315°.
解答 解:(1)如圖1,延長ED交AG于點H,![]()
∵點O是正方形ABCD兩對角線的交點,
∴OA=OD,OA⊥OD,
∵OG=OE,
在△AOG和△DOE中,
$\left\{\begin{array}{l}{OA=OD}\\{∠AOG=∠DOE=90°}\\{OG=OE}\end{array}\right.$,
∴△AOG≌△DOE,
∴∠AGO=∠DEO,
∵∠AGO+∠GAO=90°,
∴∠GAO+∠DEO=90°,
∴∠AHE=90°,
即DE⊥AG;
(2)①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:
(Ⅰ)α由0°增大到90°過程中,當(dāng)∠OAG′=90°時,
∵OA=OD=$\frac{1}{2}$OG=$\frac{1}{2}$OG′,
∴在Rt△OAG′中,sin∠AG′O=$\frac{OA}{OG′}$=$\frac{1}{2}$,
∴∠AG′O=30°,
∵OA⊥OD,OA⊥AG′,
∴OD∥AG′,![]()
∴∠DOG′=∠AG′O=30°,
即α=30°;
(Ⅱ)α由90°增大到180°過程中,當(dāng)∠OAG′=90°時,
同理可求∠BOG′=30°,
∴α=180°-30°=150°.
綜上所述,當(dāng)∠OAG′=90°時,α=30°或150°.
②如圖3,當(dāng)旋轉(zhuǎn)到A、O、F′在一條直線上時,AF′的長最大,
∵正方形ABCD的邊長為1,
∴OA=OD=OC=OB=$\frac{\sqrt{2}}{2}$,
∵OG=2OD,
∴OG′=OG=$\sqrt{2}$,
∴OF′=2,
∴AF′=AO+OF′=$\frac{\sqrt{2}}{2}$+2,
∵∠COE′=45°,
∴此時α=315°.
點評 本題主要考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、銳角三角函數(shù)、旋轉(zhuǎn)變換的性質(zhì)的綜合運用,有一定的綜合性,分類討論當(dāng)∠OAG′是直角時,求α的度數(shù)是本題的難點.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ②③ | B. | ②⑤ | C. | ①③④ | D. | ④⑤ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com