欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.一列數(shù):a1,a2,a3,…an,…,其中a1=$\frac{4}{3}$,a2=$\frac{13}{9}$,且當(dāng)n≥3時(shí),an-an-1=$\frac{1}{3}$(an-1-an-2),用含n的式子表示an的結(jié)果是$\frac{3}{2}$-$\frac{1}{2×{3}^{n}}$.

分析 根據(jù)an-an-1=$\frac{1}{3}$(an-1-an-2),依次寫出相鄰兩項(xiàng)之差,再左右兩邊同時(shí)累加得出an-a1=$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$,令$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$=A,A-$\frac{1}{3}$A得出A的值,將其代入an-a1中,表示出an即可.

解答 解:∵an-an-1=$\frac{1}{3}$(an-1-an-2),
∴有an-an-1=$\frac{1}{3}({a}_{n-1}-{a}_{n-2})$=($\frac{1}{3}$)n-2(a2-a1),an-1-an-2=$\frac{1}{3}({a}_{n-2}-{a}_{n-3})$=($\frac{1}{3}$)n-3(a2-a1),…,a3-a2=$\frac{1}{3}({a}_{2}-{a}_{1})$,a2-a1=$\frac{1}{9}$=$(\frac{1}{3})^{2}$,
左右兩邊同時(shí)累加得an-a1=$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$,
令$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$=A,則$\frac{1}{3}$A=$\frac{1}{{3}^{3}}$+$\frac{1}{{3}^{4}}$…+$\frac{1}{{3}^{n+1}}$,
A-$\frac{1}{3}$A=$\frac{1}{{3}^{2}}$-$\frac{1}{{3}^{n+1}}$,解得:A=$\frac{1}{6}$-$\frac{1}{2×{3}^{n}}$.
∴an=A+a1=$\frac{1}{6}$-$\frac{1}{2×{3}^{n}}$+$\frac{4}{3}$=$\frac{3}{2}$-$\frac{1}{2×{3}^{n}}$.
故答案為:$\frac{3}{2}$-$\frac{1}{2×{3}^{n}}$.

點(diǎn)評(píng) 本題考查了規(guī)律型中得數(shù)字的變化類,解題的關(guān)鍵是找出an-a1=$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$.本題屬于中檔題,難度不大,因?yàn)槌踔袥]有學(xué)過等比數(shù)列的求和公式,故此處用錯(cuò)位相減法來推導(dǎo)出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.a,b在數(shù)軸上的位置如圖,化簡|a+b|的結(jié)果是( 。
A.-a-bB.a+bC.a-bD.b-a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,EF∥AD,∠1=∠2,猜想∠BAC與∠DGA的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.已知:如圖,DG∥AB,AD⊥BC于D,EF⊥BC于F,求證:∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.一個(gè)角的補(bǔ)角的度數(shù)是79°59′,則這個(gè)角的度數(shù)是100°01′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.正方形ABCD中,點(diǎn)E為AB的中點(diǎn),若將△BCE沿CE對(duì)折,點(diǎn)B將落在點(diǎn)F處,連接EF并延長交AD、CD的延長線分別于G、H.
(1)若BC=4,求FG的長.
(2)求證:CH=5DH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.化簡(1-$\frac{1}{x}$)÷$\frac{{x}^{2}-1}{x+{x}^{2}}$的結(jié)果是1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.如圖,正方形ACEF的邊長為2,以AC為一邊在同側(cè)做等腰三角形ABC,且∠BAC=150°,BC交AE于點(diǎn)D,下列結(jié)論:①EF=ED;②S△DEC=1+$\frac{\sqrt{3}}{3}$;③AD+CD=BD,④S△ABD=$\frac{\sqrt{3}}{3}$,其中正確結(jié)論的序號(hào)是②③④.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.估計(jì)$\sqrt{11}$的值在( 。
A.1和2之間B.2和3之間C.3和4之間D.4和5之間

查看答案和解析>>

同步練習(xí)冊(cè)答案