分析 (1)①欲證明直線AB是⊙O的切線,只要證明OC⊥AB即可.
②首先證明OC∥DF,再證明∠FDC=∠OCD,∠EDC=∠OCD即可.
(2)作ON⊥DF于N,延長(zhǎng)DF交AB于M,在RT△CDM中,求出DM、CM即可解決問題.
解答 (1)①證明:連接OC.
∵OA=OB,AC=CB,
∴OC⊥AB,
∵點(diǎn)C在⊙O上,![]()
∴AB是⊙O切線.
②證明:∵OA=OB,AC=CB,
∴∠AOC=∠BOC,
∵OD=OF,
∴∠ODF=∠OFD,
∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,
∴∠BOC=∠OFD,
∴OC∥DF,
∴∠CDF=∠OCD,
∵OD=OC,
∴∠ODC=∠OCD,
∴∠ADC=∠CDF.
(2)作ON⊥DF于N,延長(zhǎng)DF交AB于M.
∵ON⊥DF,
∴DN=NF=3,
在RT△ODN中,∵∠OND=90°,OD=5,DN=3,
∴ON=$\sqrt{O{D}^{2}-D{N}^{2}}$=4,
∵∠OCM+∠CMN=180°,∠OCM=90°,
∴∠OCM=∠CMN=∠MNO=90°,
∴四邊形OCMN是矩形,
∴ON=CM=4,MN=OC=5,
在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,
∴CD=$\sqrt{D{M}^{2}+C{M}^{2}}$=$\sqrt{{8}^{2}+{4}^{2}}$=4$\sqrt{5}$.
點(diǎn)評(píng) 本題考查切線的判定,等腰三角形的性質(zhì)、垂徑定理、平行線的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | AG平分∠DAB | B. | AD=DH | C. | DH=BC | D. | CH=DH |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 25$\sqrt{3}$ | B. | 18$\sqrt{3}$ | C. | 9$\sqrt{3}$ | D. | 9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{9}{16}$ | D. | $\frac{16}{9}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (x-2)4 | B. | (x2-2)2 | C. | (x2-4)2 | D. | (x+2)2(x-2)2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com