欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.如圖,直線AB經(jīng)過⊙O上的點(diǎn)C,直線AO與⊙O交于點(diǎn)E和點(diǎn)D,OB與⊙O交于點(diǎn)F,連接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.
(1)求證:①直線AB是⊙O的切線;②∠FDC=∠EDC;
(2)求CD的長(zhǎng).

分析 (1)①欲證明直線AB是⊙O的切線,只要證明OC⊥AB即可.
②首先證明OC∥DF,再證明∠FDC=∠OCD,∠EDC=∠OCD即可.
(2)作ON⊥DF于N,延長(zhǎng)DF交AB于M,在RT△CDM中,求出DM、CM即可解決問題.

解答 (1)①證明:連接OC.
∵OA=OB,AC=CB,
∴OC⊥AB,
∵點(diǎn)C在⊙O上,
∴AB是⊙O切線.
②證明:∵OA=OB,AC=CB,
∴∠AOC=∠BOC,
∵OD=OF,
∴∠ODF=∠OFD,
∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,
∴∠BOC=∠OFD,
∴OC∥DF,
∴∠CDF=∠OCD,
∵OD=OC,
∴∠ODC=∠OCD,
∴∠ADC=∠CDF.
(2)作ON⊥DF于N,延長(zhǎng)DF交AB于M.
∵ON⊥DF,
∴DN=NF=3,
在RT△ODN中,∵∠OND=90°,OD=5,DN=3,
∴ON=$\sqrt{O{D}^{2}-D{N}^{2}}$=4,
∵∠OCM+∠CMN=180°,∠OCM=90°,
∴∠OCM=∠CMN=∠MNO=90°,
∴四邊形OCMN是矩形,
∴ON=CM=4,MN=OC=5,
在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,
∴CD=$\sqrt{D{M}^{2}+C{M}^{2}}$=$\sqrt{{8}^{2}+{4}^{2}}$=4$\sqrt{5}$.

點(diǎn)評(píng) 本題考查切線的判定,等腰三角形的性質(zhì)、垂徑定理、平行線的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.某學(xué)校為了解學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機(jī)調(diào)查了若干名學(xué)生,根據(jù)調(diào)查數(shù)據(jù)進(jìn)行整理,繪制了如下的不完整統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)以上的信息,回答下列問題:
(1)本次共調(diào)查了50名學(xué)生,其中最喜愛戲曲的有3人;在扇形統(tǒng)計(jì)圖中,最喜愛體育的對(duì)應(yīng)扇形的圓心角大小是72°.
(2)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛新聞的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.(1)計(jì)算:(-3)2-($\frac{1}{5}$)-1-$\sqrt{8}$×$\sqrt{2}$+(-2)0
(2)先化簡(jiǎn),再求值:$\frac{2{x}^{2}-2x}{{x}^{2}-1}$-$\frac{x}{x+1}$,其中x=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.方程x2-3=0的根是x=±$\sqrt{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在?ABCD中,AB>AD,按以下步驟作圖:以點(diǎn)A為圓心,小于AD的長(zhǎng)為半徑畫弧,分別交AB、AD于點(diǎn)E、F;再分別以點(diǎn)E、F為圓心,大于$\frac{1}{2}$EF的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)G;作射線AG交CD于點(diǎn)H,則下列結(jié)論中不能由條件推理得出的是( 。
A.AG平分∠DABB.AD=DHC.DH=BCD.CH=DH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,將邊長(zhǎng)為10的正三角形OAB放置于平面直角坐標(biāo)系xOy中,C是AB邊上的動(dòng)點(diǎn)(不與端點(diǎn)A,B重合),作CD⊥OB于點(diǎn)D,若點(diǎn)C,D都在雙曲線y=$\frac{k}{x}$上(k>0,x>0),則k的值為( 。
A.25$\sqrt{3}$B.18$\sqrt{3}$C.9$\sqrt{3}$D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.已知△ABC∽△DEF,若△ABC與△DEF的相似比為$\frac{3}{4}$,則△ABC與△DEF對(duì)應(yīng)中線的比為( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{9}{16}$D.$\frac{16}{9}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.已知關(guān)于x的不等式組$\left\{\begin{array}{l}{5x+2>3(x-1)}\\{\frac{1}{2}x≤8-\frac{3}{2}x+2a}\end{array}\right.$有四個(gè)整數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.將多項(xiàng)式(x2-1)2+6(1-x2)+9因式分解,正確的是( 。
A.(x-2)4B.(x2-2)2C.(x2-4)2D.(x+2)2(x-2)2

查看答案和解析>>

同步練習(xí)冊(cè)答案