分析 根據(jù)角平分線上的點到角的兩邊的距離相等可得點O到AB、AC、BC的距離都相等(即OE=OD=OF),從而可得到△ABC的面積等于周長的一半乘以3,代入求出即可.
解答 解:如圖,連接OA,過O作OE⊥AB于E,OF⊥AC于F,![]()
∵OB、OC分別平分∠ABC和∠ACB,
∴OE=OF=OD=3,
∵△ABC的周長是20,OD⊥BC于D,且OD=3,
∴S△ABC=$\frac{1}{2}$×AB×OE+$\frac{1}{2}$×BC×OD+$\frac{1}{2}$×AC×OF=$\frac{1}{2}$×(AB+BC+AC)×3
=$\frac{1}{2}×$20×3=30,
故答案為:30.
點評 本題考查了角平分線上的點到角的兩邊的距離相等的性質(zhì),判斷出三角形的面積與周長的關(guān)系是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $(80+2x)(50+2x)×\frac{20}{27}=80×50$ | B. | $(80+2x)(50+2x)=80×50×\frac{20}{27}$ | ||
| C. | $(80-2x)(50-2x)×\frac{20}{27}=80×50$ | D. | $(80-2x)(50-2x)=80×50×\frac{20}{27}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{4}$=±2 | B. | ±$\sqrt{16}$=4 | C. | $\root{3}{-8}$=-2 | D. | -$\sqrt{(-3)^{2}}$=3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com