分析 連接BD,由勾股定理先求出BD的長,再判定△ABD∽△BED,根據(jù)對應(yīng)邊成比例列出比例式,可求得DE的長.
解答
解:如圖,連接BD,
∵AB為⊙O的直徑,AB=6,AD=5,
∴∠ADB=90°,
∴BD=$\sqrt{{6}^{2}-{5}^{2}}$=$\sqrt{11}$,
∵弦AD平分∠BAC,
∴$\widehat{CD}=\widehat{BD}$,
∴∠DBE=∠DAB,
在△ABD和△BED中,
$\left\{\begin{array}{l}{∠BAD=∠EBD}\\{∠ADB=∠BDE}\end{array}\right.$,
∴△ABD∽△BED,
∴$\frac{ED}{BD}=\frac{BD}{AD}$,即BD2=ED×AD,
∴($\sqrt{11}$)2=ED×5,
解得DE=$\frac{11}{5}$.
故答案為:$\frac{11}{5}$.
點(diǎn)評 此題主要考查了相似三角形的判定和性質(zhì),以及圓周角定理,解答此題的關(guān)鍵是作輔助線,構(gòu)造出△ABD∽△BED.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{(-a+b)^2}{(a-b)^2}$=1 | B. | $\frac{-a-1}{-a^2+8}$=$\frac{a-1}{a^2+8}$ | ||
| C. | $\frac{x^2+y^2}{x+y}$=x+y | D. | $\frac{0.5+2y}{-0.1+x}$=$\frac{5+2y}{1+x}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 8 | B. | 4 | C. | 7 | D. | 16 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①② | B. | ①③ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 24 | B. | 36 | C. | 48 | D. | 60 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com