分析 (1)先利用HL證明Rt△BCD與Rt△CBE全等,然后根據(jù)全等三角形對應(yīng)角相等可得∠ABC=∠ACB,再根據(jù)等角對等邊的性質(zhì)可得AB=AC,所以△ABC是等腰三角形;
(2)根據(jù)(1)中Rt△BCD≌Rt△CBE,然后利用全等三角形對應(yīng)邊相等可得BD=CE,對應(yīng)角相等可得∠BCE=∠CBD,然后利用等角對等邊可得BO=CO,相減可得OD=OE,再根據(jù)到角的兩邊距離相等的點在角的平分線上即可證明.
解答 解:(1)△ABC是等腰三角形.
理由如下:∵BD、CE是△ABC的高,
∴△BCD與△CBE是直角三角形,
在Rt△BCD與Rt△CBE中,$\left\{\begin{array}{l}{BE=CD}\\{BC=BC}\end{array}\right.$,
∴Rt△BCD≌Rt△CBE(HL),
∴∠ABC=∠ACB,
∴AB=AC,
即△ABC是等腰三角形;![]()
(2)直線AO是線段BC的垂直平分線.
理由如下:∵Rt△BCD≌Rt△CBE,
∴BD=CE,∠BCE=∠CBD,
∴BO=CO,
∴BD-BO=CE-CO,
即OD=OE,
∵BD、CE是△ABC的高,
∴點O在∠A的平分線上,
∵AB=AC,
∴直線AO是線段BC的垂直平分線.
點評 本題主要考查了等腰三角形的性質(zhì),全等三角形的判定,到角的兩邊距離相等的點在角的平分線上的性質(zhì),證明出全等三角形是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com