如圖所示,動(dòng)點(diǎn)A、B同時(shí)從原點(diǎn)O出發(fā),運(yùn)動(dòng)的速度都是每秒1個(gè)單位,動(dòng)點(diǎn)A沿x軸正方向運(yùn)動(dòng),動(dòng)點(diǎn)B沿y軸正方向運(yùn)動(dòng),以O(shè)A、OB為鄰邊建立正方形OACB,拋物線y=-x
2+bx+c經(jīng)過B、C兩點(diǎn),假設(shè)A、B兩點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒:
(1)直接寫出直線OC的解析式;
(2)當(dāng)t=3秒時(shí),求此時(shí)拋物線的解析式;此時(shí)拋物線上是否存在一點(diǎn)D,使得S
△BCD=6?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由;
(3)在(2)的條件下,有一條平行于y軸的動(dòng)直線l,交拋物線于點(diǎn)E,交直線OC于點(diǎn)F,若以O(shè)、B、E、F四個(gè)點(diǎn)構(gòu)成的四邊形是平行四邊形,求點(diǎn)F的坐標(biāo);
(4)在動(dòng)點(diǎn)A、B運(yùn)動(dòng)的過程中,若正方形OACB內(nèi)部有一個(gè)點(diǎn)P,且滿足OP=
,CP=2,∠OPA=135°,直接寫出此時(shí)AP的長度.
