分析 連接OE,根據(jù)CE⊥OA且OA=4可知OC=2,故cos∠EOC=$\frac{OC}{OE}$=$\frac{1}{2}$,由此可得出∠COE的度數(shù),進(jìn)而得出∠BOE的度數(shù),根據(jù)S陰影=S扇形AOB-S扇形ACD-S扇形BOE-S△COE即可得出結(jié)論.
解答
解:連接OE,
∵C為OA的中點(diǎn),CE⊥OA且OA=4,
∴OC=2,
∴cos∠EOC=$\frac{OC}{OE}$=$\frac{1}{2}$,CE=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∴∠COE=60°.
∵∠AOB=90°,
∴∠BOE=30°,
∴S陰影=S扇形AOB-S扇形ACD-S扇形BOE-S△COE
=$\frac{90π×{4}^{2}}{360}$-$\frac{90π×{2}^{2}}{360}$-$\frac{30π×{4}^{2}}{360}$-$\frac{1}{2}$×2×2$\sqrt{3}$
=4π-π-$\frac{4π}{3}$-2$\sqrt{3}$
=$\frac{5π}{3}$-2$\sqrt{3}$.
故答案為:$\frac{5π}{3}$-2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查的是扇形面積的計(jì)算,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用銳角三角函數(shù)的定義求出∠COE的度數(shù)是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 8.1×105平方米 | B. | 8.1×106平方米 | C. | 3.6×105平方米 | D. | 3.6×106平方米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | m≠2 | B. | m≠-1 | C. | m=-1 | D. | m≠2且m≠-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 36.32×108 | B. | 3.632×108 | C. | 3.632×109 | D. | 0.3632×1010 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 100° | B. | 80° | C. | 50° | D. | 40° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com