分析 圖①,首先根據(jù)等邊三角形的性質(zhì)可得AC=BC,∠ACB=60°,DC=CF,∠DCF=60°,再根據(jù)等式的性質(zhì)可得∠DCB=∠ACF,然后證明△BCD≌△FCA可得AF=BD;圖②證法與①類似.
解答 解:圖①中:AF=BD,
∵△ABC是等邊三角形,
∴AC=BC,∠ACB=60°,
∵△DCF是等邊三角形,
∴DC=CF,∠DCF=60°,
∴∠ACB-∠DCA=∠DCF-∠DCA,
即∠DCB=∠ACF,
在△BDC和△AFC中$\left\{\begin{array}{l}{AC=BC}\\{∠BCD=∠ACF}\\{DC=FC}\end{array}\right.$,
∴△BCD≌△FCA(SAS),
∴AF=BD;
圖②中:AF=BD,
∵△ABC是等邊三角形,
∴AC=BC,∠ACB=60°,
∵△DCF是等邊三角形,
∴DC=CF,∠DCF=60°,
∴∠ACB+∠DCA=∠DCF+∠DCA,
即∠DCB=∠ACF,
在△BDC和△AFC中$\left\{\begin{array}{l}{AC=BC}\\{∠BCD=∠ACF}\\{DC=FC}\end{array}\right.$,
∴△BCD≌△FCA(SAS),
∴AF=BD.
點(diǎn)評(píng) 此題主要考查了全等三角形的判定和性質(zhì),以及等邊三角形的性質(zhì),全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時(shí),關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com