分析 (1)連接OD,易證DO是△ABC的中位線,從而可知OD∥BC,所以∠EDO=∠CED,由于DE⊥BC,從而可知DE是⊙O的切線;
(2)連接BD,分別求出四邊形OBED與扇形OBD的面積,然后即可求出陰影部分面積.
解答 (1)證明:連接OD.
∵D是AC的中點,O是AB的中點,
∴DO是△ABC的中位線,
∴OD∥BC,則∠EDO=∠CED![]()
又∵DE⊥BC,
∴∠CED=90°,
∴∠EDO=∠CED=90°
∴OD⊥DE
∴DE是⊙O的切線,
(2)連接BD
∵AB是直徑
∴∠ADB=90°
∵∠BAC=30°,AB=4
∴∠BOD=2∠ABD=60°
∵OB=OD
∴△OBD是等邊三角形
∴∠ODB=∠BOD=60°,OB=OD=BD=2
∵∠EDO=90°
∴∠BDE=30°
∴在Rt△BDE中 BE=1,DE=$\sqrt{3}$
∴S陰=S四邊形ODEB-S扇形OBD=$\frac{(1+2)\sqrt{3}}{2}$-$\frac{60π{×2}^{2}}{360}$=$\frac{3\sqrt{3}}{2}$-$\frac{2π}{3}$
答:陰影面積為$\frac{3\sqrt{3}}{2}$-$\frac{2π}{3}$
點評 本題考查圓的綜合問題,涉及圓周定理,等邊三角形的性質(zhì)與判定,切線的判定,扇形面積公式,綜合程度較高,屬于中等題型.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x+y=90}\\{x=y+10}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=90}\\{x=y-10}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x+y=180}\\{x=y-10}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=180}\\{x=y+10}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com