分析 先利用勾股定理計算出AB,從而得到△ABC的周長為12,根據(jù)旋轉(zhuǎn)變換可得△OAB的旋轉(zhuǎn)變換為每3次一個循環(huán),由于2016=3×672,于是可判斷三角形2016與三角形1的狀態(tài)一樣,然后計算672×12即可得到三角形2016的直角頂點坐標.
解答 解:∵A(-3,0),B(0,4),
∴OA=3,OB=4,
∴AB=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴△ABC的周長=3+4+5=12,
∵△OAB每連續(xù)3次后與原來的狀態(tài)一樣,
∵2016=3×672,
∴三角形2016與三角形1的狀態(tài)一樣,
∴三角形2016的直角頂點的橫坐標=672×12=8064,
∴三角形2016的直角頂點坐標為(8064,0).
故答案為(8064,0).
點評 本題考查了坐標與圖形變化-旋轉(zhuǎn):圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標.常見的是旋轉(zhuǎn)特殊角度如:30°,45°,60°,90°,180°.解決本題的關(guān)鍵是確定循環(huán)的次數(shù).
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 4 | B. | 2π | C. | π-2 | D. | 2π-2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 5,12,13 | B. | 4,5,6 | C. | 1,$\sqrt{2}$,$\sqrt{3}$ | D. | 7,24,25 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x-y=3}\\{xy=1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{2x+y=5}\\{x=3y-2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{{x}^{2}-y=1}\\{y=2x}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{\frac{1}{y}-x=2}\\{x+y=0}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com