分析 (1)由AB是⊙O的直徑,根據(jù)半圓(或直徑)所對的圓周角是直角,即可得∠ACB=90°,又由∠BAC=30°,易求得∠BAE=90°,則可得AE是⊙O的切線;
(2)首先連接OC,易得△OBC是等邊三角形,則可得∠AOC=120°,由弧長公式,即可求得劣弧AC的長.
解答 解:(1)∵AB是⊙O的直徑,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,![]()
∴AE是⊙O的切線;
(2)如圖,連接OC,
∵∠B=∠D=60°,OB=OC,
∴△BCO是等邊三角形,
∴∠BOC=60°,
∴∠AOC=120°,AB=2BC=12,
∴AO=6,
∴劣弧AC的長為$\frac{120•π•6}{360}$=2π.
點評 此題考查了切線的判定、圓周角定理以及弧長公式等知識.此題難度適中,注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com