分析 (1)根據(jù)90°的角可以證明,∠AOC=∠BOD,再根據(jù)同一扇形的半徑相等,利用邊角邊定理即可證明三角形全等;
(2)根據(jù)扇形面面積公式求出陰影部分的面積.
解答 (1)證明:∵∠COD=∠AOB=90°,
∴∠AOC+∠AOD=∠AOD+∠BOD,
∴∠AOC=∠BOD,
在△AOC和△BOD中,
$\left\{\begin{array}{l}{OC=OD\\;}\\{∠AOC=∠BOD}\\{OA=OB}\end{array}\right.$,
∴△AOC≌△BOD(SAS);
(2)解:S陰影=S扇形AOB-S扇形COD=$\frac{1}{4}$π×32-$\frac{1}{4}$π×22=$\frac{5}{4}$π(cm2).
答:陰影部分的面積是$\frac{5}{4}$πcm2.
點(diǎn)評(píng) 本題主要考查了全等三角形的判定和如何計(jì)算扇形的面積,全等三角形的證明,常用的方法有“邊邊邊”,“邊角邊”,“角邊角”,“角角邊”,本題證明得到∠AOC=∠BOD是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 36x-6 | B. | 36x-3 | C. | -12x-2y4 | D. | -36x-3y |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{3ab^2}$和$\sqrt{3ab^2c}$ | B. | $\sqrt{12ab^3}$和$\sqrt{3ab}$ | C. | $\sqrt{ab}$和$\sqrt{{a}^{3}^{5}}$ | D. | $\sqrt{\frac{a}}$和$\sqrt{\frac{a}}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com