分析 過O作OP⊥BC,交BC于點P,由E、F分別為AB、AC的中點,即EF為三角形ABC的中位線,利用中位線定理得到EF=$\frac{1}{2}$BC,且EF∥BC,由AD=$\frac{1}{2}$BC,等量代換得到EF=AD,由平行線等分線段性質(zhì)得到OP=$\frac{1}{2}$AD,即OP=$\frac{1}{2}$EF,由EF為圓O的直徑,得到OP為圓的半徑,即可得到BC與圓O相切.
解答
解:圓O與BC相切,
理由:過O作OP⊥BC,交BC于點P,如圖所示:
∵EF為△ABC的中位線,
∴E、F分別為AB、AC的中點,
∴EF=$\frac{1}{2}$BC,EF∥BC,
∵AD=$\frac{1}{2}$BC,
∴EF=AD,
∴OP=$\frac{1}{2}$AD=$\frac{1}{2}$EF,
∵EF為圓O的直徑,
∴OP為圓的半徑,
∴BC為圓O的切線,即圓O與BC相切.
點評 此題考查的是直線與圓的位置關(guān)系,根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解是解答本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 65° | B. | 70° | C. | 75° | D. | 80° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com