分析 (1)根據(jù)線段的垂直平分線的性質(zhì)得到DB=DA,EC=EA,根據(jù)等腰三角形的性質(zhì)解答即可;
(2)分兩種情況進(jìn)行討論,先根據(jù)線段垂直平分線的性質(zhì),得到∠B=∠BAD,∠C=∠CAE,進(jìn)而得到∠BAD+∠CAE=∠B+∠C=180°-α,再根據(jù)角的和差關(guān)系進(jìn)行計(jì)算即可.
解答 解:(1)∵AB的垂直平分線交BC于點(diǎn)D,AC的垂直平分線交BC于點(diǎn)E,
∴DB=DA,EC=EA,
∵∠BAC=110°,
∴∠B+∠C=70°,
∵DB=DA,EC=EA,
∴∠DAB=∠B,∠EAC=∠C,
∴∠DAB+∠EAC=70°,
∴∠DAE=110°-70°=40°,
(2)分兩種情況:
①如圖所示,當(dāng)∠BAC≥90°時(shí),![]()
∵DM垂直平分AB,
∴DA=DB,
∴∠B=∠BAD,
同理可得,∠C=∠CAE,
∴∠BAD+∠CAE=∠B+∠C=180°-θ,
∴∠DAE=∠BAC-(∠BAD+∠CAE)=θ-(180°-θ)=2θ-180°;
②如圖所示,當(dāng)∠BAC<90°時(shí),![]()
∵DM垂直平分AB,
∴DA=DB,
∴∠B=∠BAD,
同理可得,∠C=∠CAE,
∴∠BAD+∠CAE=∠B+∠C=180°-θ,
∴∠DAE=∠BAD+∠CAE-∠BAC=180°-θ-θ=180°-2θ.
點(diǎn)評(píng) 本題考查了三角形內(nèi)角和定理,線段垂直平分線性質(zhì)的應(yīng)用,注意:線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 22017 | B. | -1 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{11}$ | B. | $\sqrt{0.2}$ | C. | $\sqrt{\frac{1}{2}}$ | D. | $\sqrt{20}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com