分析 先證明△BPD∽△CQP,得出$\frac{BD}{CP}=\frac{PB}{CQ}$,求出CQ=$\frac{1}{2}$x(m-x)=-$\frac{1}{2}$x2+$\frac{1}{2}$mx,由二次函數(shù)得出當(dāng)x=$\frac{1}{2}$m時(shí),CQ取最大值,最大值為$\frac{1}{8}$m2,要使Q永遠(yuǎn)在AC上,則CQ≤AC,即CQ≤4,得出$\frac{1}{8}$m2≤4,因此0<m≤4$\sqrt{2}$,即可得出答案.
解答 解:設(shè)BP=x,則PC=m-x,∵AB=AC,
∴∠B=∠C,
∵∠DPQ=∠B,
∴∠C=∠DPQ,
∵∠PQC=180°-∠QPC-∠C,∠BPD=180°-∠DPQ-∠QPC,
∴∠PQC=∠BPD,
∴△BPD∽△CQP,
∴$\frac{BD}{CP}=\frac{PB}{CQ}$,即$\frac{2}{m-x}=\frac{x}{CQ}$,
∴CQ=$\frac{1}{2}$x(m-x)=-$\frac{1}{2}$x2+$\frac{1}{2}$mx,
當(dāng)x=$\frac{1}{2}$m時(shí),CQ取最大值,最大值為$\frac{1}{8}$m2,
要使Q永遠(yuǎn)在AC上,則CQ≤AC,即CQ≤4,
∴$\frac{1}{8}$m2≤4,
∴m2≤32,
∴0<m≤4$\sqrt{2}$,
∴m的最大值為4$\sqrt{2}$;
故答案為:4$\sqrt{2}$.
點(diǎn)評(píng) 本題考查了相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì)以及二次函數(shù)的最大值問(wèn)題;證明三角形相似是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ∠D=66° | B. | EF=5cm | C. | ∠E=60° | D. | DE=5cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 若sinα=$\frac{\sqrt{2}}{2}$,則α=60° | |
| B. | 半徑分別為3和5的兩圓相外切,則兩圓的圓心距為8 | |
| C. | 平分弦的直徑垂直于弦,并且平分弦所對(duì)的兩條弧 | |
| D. | 在反比例函數(shù)y=$\frac{1}{x}$的圖象上,y隨著x的增大而減小 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 11011001(二進(jìn)制數(shù)) | B. | 75(十進(jìn)制數(shù)) | ||
| C. | 72(八進(jìn)制數(shù)) | D. | 57(十六制數(shù)) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com