分析 (1)因?yàn)锳F∥DM,所以△AEP∽△MCP,△AFP∽△MDP,利用對(duì)應(yīng)邊的比相等可得$\frac{AE}{CM}=\frac{AP}{PM}=\frac{AF}{DM}$;
(2)延長(zhǎng)BP交CD于點(diǎn)N,因?yàn)锳F∥DM,類(lèi)似(1)問(wèn)中,易證$\frac{EF}{BE}$=$\frac{CD}{CN}$和$\frac{AF}{EF}$=$\frac{DM}{CD}$,再證明△BNC∽△MAD,利用正方形四邊形相等即可得出$\frac{CN}{CD}=\frac{CD}{DM}$,從而得出EF2=AF•BE;
解答 (1)在正方形ABCD中,
AF∥DM,
∴△AEP∽△MCP,△AFP∽△MDP
∴$\frac{AE}{CM}$=$\frac{AP}{PM}$,$\frac{AP}{PM}$=$\frac{AF}{PM}$,
∴$\frac{AE}{CM}=\frac{AP}{PM}=\frac{AF}{DM}$,
∴$\frac{AE}{CM}$=$\frac{AF}{DM}$,
(2)延長(zhǎng)BP交CD于點(diǎn)N,
∵EF∥CD,
∴△EFP∽△CDP,
∴$\frac{EF}{CD}$=$\frac{PE}{PC}$,
∵BE∥CN,
∴△EBP∽△CNP,
∴$\frac{BE}{CN}$=$\frac{PE}{PC}$,
∴$\frac{EF}{CD}=\frac{BE}{CN}$,
即$\frac{EF}{BE}$=$\frac{CD}{CN}$,
同理可證:$\frac{AF}{DM}$=$\frac{PF}{PD}$,$\frac{EF}{CD}$=$\frac{PF}{PD}$,
∴$\frac{AF}{DM}$=$\frac{EF}{CD}$,![]()
即$\frac{AF}{EF}$=$\frac{DM}{CD}$,
∵∠APB=∠BPM=BCM=90°,
∴∠NBC=∠AMD,
∴△BNC∽△MAD,
∴$\frac{CN}{BC}$=$\frac{AD}{DM}$
∵AD=BC=CD,
∴$\frac{CN}{CD}=\frac{CD}{DM}$,
∴$\frac{EF}{BE}=\frac{AF}{EF}$,
∴EF2=AF•BE;
(3)連接AN
由(2)可知,∠PNM=∠DAM,
∴A、P、N、D四點(diǎn)共圓,
∴∠APD=∠AND,
設(shè)BF=x,AB=2,
由(2)可知:EF2=AF•BE,
∴(1+x)2=(2+x),
∴x=-$\frac{1}{2}$±$\frac{\sqrt{5}}{2}$,
∵x>0,
∴x=$\frac{\sqrt{5}-1}{2}$,
∵$\frac{BF}{DN}=\frac{BP}{PN}=\frac{EB}{CN}$,
∴$\frac{BF}{DN}=\frac{EB}{CD-DN}$,
∴DN=3-$\sqrt{5}$,
∴在Rt△ADN中,
tan∠AND=$\frac{AD}{DN}$=$\frac{2}{3-\sqrt{5}}$=$\frac{{3+\sqrt{5}}}{2}$,
∴tan∠APD=tan∠AND=$\frac{3+\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題考查相似三角形的性質(zhì)與判定,涉及正方形的性質(zhì),銳角三角函數(shù),相似三角形的性質(zhì)等知識(shí),題目較綜合,需要學(xué)生靈活運(yùn)用對(duì)應(yīng)邊的比相等進(jìn)行求證,解題的關(guān)鍵是利用AF∥DM得出相似三角形.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0.618 | B. | 0..618 | C. | 0.00618 | D. | 0.000618 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com