分析 先求得正方形的邊長,依據(jù)等邊三角形的定義可知BE=AB=2,連結(jié)BP,依據(jù)正方形的對稱性可知PB=PD,則PE+PD=PE+BP.由兩點(diǎn)之間線段最短可知:當(dāng)點(diǎn)B、P、E在一條直線上時(shí),PE+PD有最小值,最小值為BE的長.
解答 解:連結(jié)BP.![]()
∵ABCD為正方形,面積為4,
∴正方形的邊長為2.
∵△ABE為等邊三角形,
∴BE=AB=2.
∵ABCD為正方形,
∴△ABP與△ADP關(guān)于AC對稱.
∴BP=DP.
∴PE+PD=PE+BP.
由兩點(diǎn)之間線段最短可知:當(dāng)點(diǎn)B、P、E在一條直線上時(shí),PE+PD有最小值,最小值=BE=2.
故答案為:2.
點(diǎn)評 本題主要考查的是軸對稱最短路徑、正方形的性質(zhì),明確當(dāng)點(diǎn)B、P、E在一條直線上時(shí),PE+PD有最小值,最小值=BE是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (1,0) | B. | (1,2) | C. | (1,1) | D. | (2,1) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (1)(2) | B. | (2)(3) | C. | (2)(4) | D. | (3)(4) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| x | … | 0 | 1 | 2 | 3 | 4 | … |
| y | … | 4 | 1 | 0 | 1 | 4 | … |
| A. | y1≥y2 | B. | y1≤y2 | C. | y1>y2 | D. | y1<y2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com