分析 (1)由SAS證明△BCP≌△DCP,得出BP=DP,∠CBP=∠CDP,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理得出∠CBP=∠PEB=∠CPE═22.5°,即可得出結(jié)果;
(2)證明P、C、E、D四點共圓,由圓周角定理得出∠DPE=∠DCE=90°,由勾股定理得出DE2=CD2+CE2,DE2=PD2+PE2,即可得出結(jié)論.
解答 解:(1)∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠BCP=∠DCP=45°,∠BCD=∠DCE=90°,
∴∠PCE=45°+90°=135°,
在△BCP和△DCP中,
$\left\{\begin{array}{l}{BC=DC}&{\;}\\{∠BCP=∠DCP}&{\;}\\{CP=CP}&{\;}\end{array}\right.$,
∴△BCP≌△DCP(SAS),
∴BP=DP,∠CBP=∠CDP,
∵PE=PB,PC=CE,
∴PD=PE,∠CBP=∠PEB=∠CPE=$\frac{1}{2}$(180°-135°)=22.5°,
∴∠CDP=22.5°;![]()
(2)BC2+CE2=2PB2,理由如下:
連接DE,如圖所示:
由(1)得:∠CBP=∠CDP,PD=PE,
∵PB=PE,
∴∠CBP=∠PEB,
∴∠CDP=∠PEB,
∴P、C、E、D四點共圓,
∴∠DPE=∠DCE=90°,
由勾股定理得:DE2=CD2+CE2,DE2=PD2+PE2,
∵BC=CD,PB=PD=PE,
∴BC2+CE2=2PB2.
點評 本題考查了全等三角形的判定與性質(zhì),正方形的性質(zhì),等腰三角形的性質(zhì),四點共圓,圓周角定理,勾股定理等知識;熟記正方形的性質(zhì),證明四點共圓得出,∴∠DPE=∠DCE=90°是解決問題(2)的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com