欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.己知:在等腰三角形ABC中,AB=AC,AD⊥BC于點(diǎn)D,以AC為邊作等邊三角形ACE,直線BE交直線AD于點(diǎn)F,連接FC.
(1)如圖1,120°<∠BAC<180°,△ACE與△ABC在直線AC的異側(cè),且FC交AE于點(diǎn)M.
①求證:∠FEA=∠FCA;
②猜想線段FE,F(xiàn)A,F(xiàn)D之間的數(shù)量關(guān)系,并證明你的結(jié)論:
(2)當(dāng)60°<∠BAC<120°,且△ACE與△ABC在直線AC的同側(cè)時(shí),利用圖2畫(huà)出圖形探究線段FE,F(xiàn)A,F(xiàn)D之間的數(shù)量關(guān)系,并直接寫(xiě)出你的結(jié)論.

分析 (1)①利用中垂線得到∠FBC=∠FCB,從而得到∠FBA=∠FCA,再由等邊三角形的性質(zhì)得到∠ABF=∠AEF即可;
②先得到∠EFC=∠EAC=60°,從而判斷出∠ACD+∠ACF=30°,進(jìn)而得出∠FCK=∠ECF,判斷出△CFE≌△CFK,即可;
(2)先判斷出A,E,F(xiàn),C四點(diǎn)共圓,得出∠EAF=∠ECF,再用直角三角形的性質(zhì)和等量代換得出∠FCK=∠ECF,判斷出△CFE≌△CFK,即可.

解答 解:(1)①∵AD⊥BC,AB=AC,
∴BD=DC,
∴FB=FC,
∴∠FBC=∠FCB,
∴AB=AC,
∴∠ABC=∠ACB,
∵∠FBA=∠FCA,
∵以AC為邊作等邊三角形ACE,
∴AE=AC=AB,
∴∠ABF=∠AEF,
∴∠ACF=∠AEF,
即:∠FEA=∠FCA;
②結(jié)論:EF=2FD-AF,
∵以AC為邊作等邊三角形ACE,
∴∠EAC=60°,
由①有,∠ACF=∠AEF,
∴∠EFC=∠EAC=60°,
由①得,BF=CF,F(xiàn)D⊥BC,
∴∠BFD=∠CFD,
∵∠BFD+∠CFD+∠EFC=180°,
∴∠BFD=∠CFD=$\frac{180°-∠EFC}{2}$=60°,
∴∠FCD=90°-∠CFD=30°,
∴∠ACD+∠ACF=30°,
∴∠ECF=∠ECA-∠ACF=60°-∠ACF=60°-(30°-∠ACD)=30°+∠ACD,
如圖1,

延長(zhǎng)AD,在AD上截取AD=DK,連接CK,
∵AD⊥BC,
∴∠ACD=∠KCD,CA=CK
∴∠FCK=∠FCD+∠KCD=∠ACF+∠ACD+∠KCD=30°+∠KCD=30°+∠ACD,
∴∠FCK=∠ECF,
∵AC=CE,AC=CK,
∴CK=CE,
在△CFE和△CFK中,$\left\{\begin{array}{l}{CF=CF}\\{∠FCE=∠FCK}\\{CE=CK}\end{array}\right.$,
∴△CFE≌△CFK,
∴FE=FK=FD+DK,
∵AD=DK,
∴FE=2FD-AF;
(2)②結(jié)論:EF=FA-2FD,
如圖2,延長(zhǎng)AD至K,使DK=AD,

∵AB=AC,AD⊥BC,
∴點(diǎn)F在線段BC的垂直平分線上,
∴AF=CF,
∴∠CBF=∠BCF,
∴∠ABF=∠ACF,
∵△ACE是等邊三角形,
∴AE=AC,
∵AB=AC,
∴AB=AE,
∴∠ABF=∠AEB,
∴∠ACF=∠AEB,
∴A,E,F(xiàn),C四點(diǎn)共圓,
∴∠EAF=∠ECF,
∵∠FCK=∠ACK-∠ACF
=2∠ACD-∠ACF
=2(90°-∠CAD)-∠ACF
=180°-2∠CAD-∠ACF
=180°-2(∠EAC-∠EAF)-∠ACF
=180°-2(60°-2∠EAF)-∠ACF
=60°+2∠EAF-∠ACF
=60°+2∠ECF-(∠ACE+∠ECF)
=60°+2∠ECF-(60°+∠ECF)
=∠ECF
∵AC=CE,AC=CK,
∴CK=CE,
在△CFE和△CFK中,$\left\{\begin{array}{l}{CF=CF}\\{∠FCE=∠FCK}\\{CE=CK}\end{array}\right.$,
∴△CFE≌△CFK,
∴FE=FK=FD+DK,
∵AD=DK,
∴FE=FA-2FD;

點(diǎn)評(píng) 此題是三角形綜合題,主要考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)和判定,解本題的關(guān)鍵是結(jié)論∠FCK=∠ECF的判定.作輔助線是解本題的難點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列說(shuō)法正確的是( 。
A.平移不改變圖形的形狀,旋轉(zhuǎn)使圖形的形狀發(fā)生改變
B.平移和旋轉(zhuǎn)的共同之處是改變圖形的位置和大小
C.一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的距離相等
D.由旋轉(zhuǎn)得到的圖形也一定可以通過(guò)平移得到

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某中學(xué)在開(kāi)學(xué)前去商場(chǎng)購(gòu)進(jìn)A、B兩種品牌的足球,購(gòu)買(mǎi)A品牌足球共花費(fèi)3000元,購(gòu)買(mǎi)B品牌足球共花費(fèi)1600元,且購(gòu)買(mǎi)A品牌足球數(shù)量是購(gòu)買(mǎi)B品牌足球的3倍,已知購(gòu)買(mǎi)一個(gè)B品牌足球比購(gòu)買(mǎi)一個(gè)A品牌足球多花30元.(1)求購(gòu)買(mǎi)一個(gè)A品牌、一個(gè)B品牌足球各需多少元?
(2)為了進(jìn)一步發(fā)展“校園足球”,學(xué)校在開(kāi)學(xué)后再次購(gòu)進(jìn)了A、B兩種品牌的足球,每種品牌的足球不少于15個(gè),總花費(fèi)恰好為2268元,且在購(gòu)買(mǎi)時(shí),商場(chǎng)對(duì)兩種品牌的足球的銷(xiāo)售單價(jià)進(jìn)行了調(diào)整,A品牌足球銷(xiāo)售單價(jià)比第一次購(gòu)買(mǎi)時(shí)提高了8%,B品牌足球按第一次購(gòu)買(mǎi)時(shí)銷(xiāo)售單價(jià)的9折出售.那么此次有哪些購(gòu)買(mǎi)方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.解分式方程
(1)$\frac{1}{x}$+$\frac{1}{x+1}$=$\frac{5}{2x+2}$;
(2)$\frac{x-2}{x+2}$-$\frac{16}{{x}^{2}-4}$=$\frac{x+2}{x-2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.先化簡(jiǎn)代數(shù)式(1-$\frac{3}{a+2}$)÷$\frac{{a}^{2}-2a+1}{{a}^{2}-4}$,再?gòu)?,-2,2,-1,1中選取一個(gè)恰當(dāng)?shù)臄?shù)作為a的值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,四邊形ABCD是平行四邊形,AC是對(duì)角線,將△ADC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后得到△AD′C′,若∠ACB=32°,BC=2,求∠C′AD的度數(shù)及AD′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,五邊形ABCDE中,AB∥CD,∠1,∠2,∠3是五邊形的外角,則∠1+∠2+∠3等于180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.解下列不等式(或不等式組),并在數(shù)軸上表示解集.
(1)$\frac{x-2}{2}-(x-1)<1$
(2)$\left\{\begin{array}{l}2x+3>5\\ 3x-2≤4\end{array}\right.$
(3)$\left\{\begin{array}{l}3x-7>-2x+3\\ 4x-12>0\end{array}\right.$
(4)$\left\{\begin{array}{l}4x-3<3({2x+1})\\ \frac{3}{2}x-1>5-\frac{1}{2}x\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,矩形ABCD中,AB=8,AD=10,點(diǎn)E為DC邊上的一點(diǎn),將△ADE沿直線AE折疊,點(diǎn)D剛好落在BC邊上的點(diǎn)F處,則CE的長(zhǎng)是3.

查看答案和解析>>

同步練習(xí)冊(cè)答案