考點:規(guī)律型:數(shù)字的變化類
專題:規(guī)律型
分析:由
=
;
=
;
| 6-5+4-3+2-1 |
| 62-52+42-32+22-12 |
=
;…
由此看出分子是從n個1相加,結(jié)果等于n;分母是(4n+3)+(4n-1)+…+11+7+3=
=n(2n+3),故猜想
| [(2n+2)-(2n+1)]+…+(6-5)+(4-3)+(2-1) |
| [(2n+2)2-(2n+1)2]+…+(62-52)+(42-32)+(22-12) |
=
.
解答:解:已
=
;
=
;
| 6-5+4-3+2-1 |
| 62-52+42-32+22-12 |
=
;
…
| [(2n+2)-(2n+1)]+…+(6-5)+(4-3)+(2-1) |
| [(2n+2)2-(2n+1)2]+…+(62-52)+(42-32)+(22-12) |
分子為n個1相加,結(jié)果等于n;
分母為n項相加:(4n+3)+(4n-1)+…+11+7+3=
=n(2n+3)
∴猜想
| [(2n+2)-(2n+1)]+…+(6-5)+(4-3)+(2-1) |
| [(2n+2)2-(2n+1)2]+…+(62-52)+(42-32)+(22-12) |
=
=
.
故答案為:
;
.
點評:此題考查數(shù)字的變化規(guī)律,找出數(shù)字之間的運算規(guī)律,利用規(guī)律解決問題.