分析 設(shè)∠BAE=x,然后根據(jù)等腰三角形兩底角相等表示出∠ABE,再根據(jù)菱形的鄰角互補求出∠ABE,根據(jù)三角形內(nèi)角和定理列出方程,求出x的值,求出∠BME和∠BEM的度數(shù),即可得出答案.
解答 證明:∵四邊形ABCD是菱形,
∴AD∥BC,
∴∠ABE+∠BAE+∠EAD=180°,
設(shè)∠BAE=x°,
則∠EAD=2x°,∠ABE=180°-x°-2x°,
∵AB=AE,∠BAE=x°,
∴∠ABE=∠AEB=180°-x°-2x°,
由三角形內(nèi)角和定理得:x+180-x-2x+180-x-2x=180,
解得:x=36,
即∠BAE=36°,
∠BAE=180°-36°-2×36°=70°,
∵四邊形ABCD是菱形,
∴∠BAD=∠CBD=$\frac{1}{2}$∠ABE=36°,
∴∠BME=∠ABD+∠BAE=36°+36°=72°,
∴∠BEM=180°-36°-72°=72°,
∴BE=BM.
點評 本題考查了菱形的性質(zhì),等腰三角形的性質(zhì),熟記各性質(zhì)并列出關(guān)于∠BAE的方程是解題的關(guān)鍵,注意:菱形的對邊平行,菱形的對角線平分一組對角.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | a(a-1)=a2-1 | B. | (x-2)(x+4)=x2-8 | C. | (x+2)2=x2+4 | D. | (x-2)(x+2)=x2-4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 5 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | (1,0) | B. | (-1,0) | C. | (2,0) | D. | (-3,0) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com