分析 (1)證得△ADF≌EQF,即可證得結(jié)論;
(2)延長AF交CE于P,證得△ABH≌△APC得出AH=CP,證得△AHF≌△EPF得出AH=EP,得出EC=2AH,解30°的直角三角形AFH求得AH,即可求得EC的長.
解答
(1)證明:如圖1,∵∠EAF=45°,AF⊥BD,
∴AF=EF,
∵EM∥AB,∠BAC=90°,
∴∠AME=90°,
∴∠AQM+∠FAD=90°,
∵∠ADF+∠FAD=90°,
∴∠AQM=∠ADF,
∴∠EQF=∠ADF,
在△ADF和EQF中,
$\left\{\begin{array}{l}{∠ADF=∠EQF}\\{∠AFD=∠EFQ=90°}\\{AF=EF}\end{array}\right.$,
∴△ADF≌EQF(AAS),
∴FD=FQ;![]()
(2)解:如圖2,延長AF交CE于P,
∵∠ABH+∠ADB=90°,∠PAC+∠ADB=90°,
∴∠ABH=∠PAC,
∵AK⊥CE,AF⊥BD,∠EHK=∠AHF,
∴∠HEK=∠FAH,
∵∠FAH+∠AHF=90°,∠HEK+∠EPF=90°,
∴∠AHF=∠EPF,
∴∠AHB=∠APC,
在△ABH與△APC中,
$\left\{\begin{array}{l}{∠ABE=∠PAC}\\{AB=AC}\\{∠AHB=∠APC}\end{array}\right.$,
∴△ABH≌△APC(ASA),
∴AH=CP,
在△AHF與△EPF中,
$\left\{\begin{array}{l}{∠AHF=∠EPF}\\{∠AFH=∠EFP=90°}\\{AF=EF}\end{array}\right.$,
∴△AHF≌△EPF(AAS),
∴AH=EP,∠CED=∠HAF,
∴EC=2AH,
∵∠DEC=30°,
∴∠HAF=30°,
∴AH=2FH=2×$\frac{3}{2}$=3,
∴EC=2AH=6.
點(diǎn)評 本題考查了三角形全等的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),(2)作出輔助線根據(jù)全等三角形是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 65° | B. | 60° | C. | 45° | D. | 70° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com