欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.如圖,在△ABC中,AB=AC,∠BAC=90°,D為AC邊上一點(diǎn),連接BD,AF⊥BD于點(diǎn)F,點(diǎn)E在BF上,連接AE,∠EAF=45°;
(1)如圖1,EM∥AB,分別交AF、AD于點(diǎn)Q、M,求證:FD=FQ;
(2)如圖2,連接CE,AK⊥CE于點(diǎn)K,交DE于點(diǎn)H,∠DEC=30°,HF=$\frac{3}{2}$,求EC的長.

分析 (1)證得△ADF≌EQF,即可證得結(jié)論;
(2)延長AF交CE于P,證得△ABH≌△APC得出AH=CP,證得△AHF≌△EPF得出AH=EP,得出EC=2AH,解30°的直角三角形AFH求得AH,即可求得EC的長.

解答 (1)證明:如圖1,∵∠EAF=45°,AF⊥BD,
∴AF=EF,
∵EM∥AB,∠BAC=90°,
∴∠AME=90°,
∴∠AQM+∠FAD=90°,
∵∠ADF+∠FAD=90°,
∴∠AQM=∠ADF,
∴∠EQF=∠ADF,
在△ADF和EQF中,
$\left\{\begin{array}{l}{∠ADF=∠EQF}\\{∠AFD=∠EFQ=90°}\\{AF=EF}\end{array}\right.$,
∴△ADF≌EQF(AAS),
∴FD=FQ;
(2)解:如圖2,延長AF交CE于P,
∵∠ABH+∠ADB=90°,∠PAC+∠ADB=90°,
∴∠ABH=∠PAC,
∵AK⊥CE,AF⊥BD,∠EHK=∠AHF,
∴∠HEK=∠FAH,
∵∠FAH+∠AHF=90°,∠HEK+∠EPF=90°,
∴∠AHF=∠EPF,
∴∠AHB=∠APC,
在△ABH與△APC中,
$\left\{\begin{array}{l}{∠ABE=∠PAC}\\{AB=AC}\\{∠AHB=∠APC}\end{array}\right.$,
∴△ABH≌△APC(ASA),
∴AH=CP,
在△AHF與△EPF中,
$\left\{\begin{array}{l}{∠AHF=∠EPF}\\{∠AFH=∠EFP=90°}\\{AF=EF}\end{array}\right.$,
∴△AHF≌△EPF(AAS),
∴AH=EP,∠CED=∠HAF,
∴EC=2AH,
∵∠DEC=30°,
∴∠HAF=30°,
∴AH=2FH=2×$\frac{3}{2}$=3,
∴EC=2AH=6.

點(diǎn)評 本題考查了三角形全等的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),(2)作出輔助線根據(jù)全等三角形是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.已知:如圖,AB∥CD,∠A=∠C,求證:∠B=∠D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.有一個直徑為a+b的圓形公園,挖去直徑分別為a與b的兩個圓形荷花池,剩下的地方全部植草皮,問草皮的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)O是等邊三角形ABC內(nèi)一點(diǎn),已知∠AOB=130°,∠BOC=125°,則在以線段OA,OB,OC為邊構(gòu)成的三角形中,內(nèi)角不可能取到的角度是( 。
A.65°B.60°C.45°D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,Rt△ABC中,∠C=90°,∠B=30°,BA=6,點(diǎn)E在AB邊上,點(diǎn)D是BC邊上一點(diǎn)(不與點(diǎn)B、C重合),且AE=ED,線段AE的最小值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.2a-3b+4c=2a-(3b-4c).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù):y=$\frac{5}{x}$,y=$\frac{-3}{x}$,y=2x2+1,y=$\frac{x}{5}$中,反比例函數(shù)的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖(a),將兩塊直角三角尺的直角頂點(diǎn)C疊放在一起.
(1)若∠DCE=25°,∠ACB=155°;若∠ACB=130°,則∠DCE=50°;
(2)猜想∠ACB與∠DCE大大小有何特殊關(guān)系,并說明理由;
(3)如圖(b),若是兩個同樣的三角尺60°銳角的頂點(diǎn)A重合在一起,則∠DAB與∠CAE的大小有何關(guān)系,請說明理由;
(4)已知∠AOB=α,∠COD=β(α、β都是銳角),如圖(c),若把它們的頂點(diǎn)O重合在一起,則∠AOD與∠BOC的大小有何關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.計(jì)算:(-1)2016•sin60°-$\root{3}{8}$+(-$\frac{1}{2}$)-2+|1-$\frac{\sqrt{3}}{2}$|=$\sqrt{3}$+1.

查看答案和解析>>

同步練習(xí)冊答案