分析 根據(jù)等邊三角形的性質(zhì)可得∠A1A0B1=60°,然后表示出A0B1的解析式,與二次函數(shù)解析式聯(lián)立求出點(diǎn)B1的坐標(biāo),再根據(jù)等邊三角形的性質(zhì)求出A0A1,同理表示出A1B2的解析式,與二次函數(shù)解析式聯(lián)立求出點(diǎn)B2的坐標(biāo),再根據(jù)等邊三角形的性質(zhì)求出A1A2,同理求出B3的坐標(biāo),然后求出A2A3,從而得到等邊三角形的邊長(zhǎng)為從1開(kāi)始的連續(xù)自然數(shù),與三角形所在的序數(shù)相等.
解答 解:∵△A0B1A1是等邊三角形,
∴∠A1A0B1=60°,
∴A0B1的解析式為y=$\frac{\sqrt{3}}{3}$x,
聯(lián)立$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}x}\\{y=\frac{2}{3}{x}^{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}}\\{y=\frac{1}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$(為原點(diǎn)舍棄)
∴B1($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),
∴等邊△A0B1A1的邊長(zhǎng)為$\frac{1}{2}$×2=1,
同理,A1B2的解析式為y=$\frac{\sqrt{3}}{3}$x+1,
聯(lián)立$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}x+1}\\{y=\frac{2}{3}{x}^{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{\sqrt{3}}{2}}\\{y=\frac{1}{2}}\end{array}\right.$(在第二象限舍棄)
∴B2($\sqrt{3}$,2),
∴等邊△A1B2A2的邊長(zhǎng)A1A2=2×(2-1)=2,
同理可求出B3($\frac{3\sqrt{3}}{2}$,$\frac{9}{2}$),
所以,等邊△A2B3A3的邊長(zhǎng)A2A3=2×($\frac{9}{2}$-1-2)=3,
…,
以此類推,系列等邊三角形的邊長(zhǎng)為從1開(kāi)始的連續(xù)自然數(shù),
△A2015B2016A2016的邊長(zhǎng)為2016.
故答案為:2016.
點(diǎn)評(píng) 本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,等邊三角形的性質(zhì),主要利用了聯(lián)立兩函數(shù)解析式求交點(diǎn)坐標(biāo),根據(jù)點(diǎn)B系列的坐標(biāo)求出等邊三角形的邊長(zhǎng)并且發(fā)現(xiàn)系列等邊三角形的邊長(zhǎng)為從1開(kāi)始的連續(xù)自然數(shù)是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 35° | B. | 5° | C. | 15° | D. | 25° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | π-2 | B. | $\frac{π}{2}-1$ | C. | $\frac{5π}{4}-1$ | D. | $\frac{3π}{4}-1$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com