分析 (1)先根據(jù)三角形內(nèi)角和定理求出∠FBC+∠BCF=180°-∠F=100°,再由角平分線定義得出∠ABC=2∠FBC,∠BCD=2∠BCF,那么∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=200°;由四邊形ABCD的內(nèi)角和為360°,得出∠BAD+∠CDA=360°-(∠ABC+∠BCD)=160°.由角平分線定義得出∠DAE=$\frac{1}{2}$∠BAD,∠ADE=$\frac{1}{2}$∠CDA,那么∠DAE+∠ADE=$\frac{1}{2}$∠BAD+$\frac{1}{2}$∠CDA=$\frac{1}{2}$(∠BAD+∠CDA)=80°,然后根據(jù)三角形內(nèi)角和定理求出∠E=180°-(∠DAE+∠ADE)=100°;
(2)由四邊形ABCD的內(nèi)角和為360°得到∠BAD+∠CDA+∠ABC+∠BCD=360°,由角平分線定義得出∠DAE+∠ADE+∠FBC+∠BCF=180°,又根據(jù)三角形內(nèi)角和定理有∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,那么∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,于是∠E+∠F=360°-(∠DAE+∠ADE+∠FBC+∠BCF)=180°;
(3)由(2)可知∠E+∠F=180°,如果∠E=∠F,那么可以求出∠E=∠F=90°,根據(jù)三角形內(nèi)角和定理求出∠DAE+∠ADE=90°,再利用角平分線定義得到∠BAD+∠CDA=180°,于是AB∥CD.
解答 解:(1)∵∠F=80,
∴∠FBC+∠BCF=180°-∠F=100°.
∵∠ABC、∠BCD的角平分線交于點(diǎn)F,
∴∠ABC=2∠FBC,∠BCD=2∠BCF,
∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=200°;
∵四邊形ABCD的內(nèi)角和為360°,
∴∠BAD+∠CDA=360°-(∠ABC+∠BCD)=160°.
∵四邊形ABCD的內(nèi)角∠BAD、∠CDA的角平分線交于點(diǎn)E,
∴∠DAE=$\frac{1}{2}$∠BAD,∠ADE=$\frac{1}{2}$∠CDA,
∴∠DAE+∠ADE=$\frac{1}{2}$∠BAD+$\frac{1}{2}$∠CDA=$\frac{1}{2}$(∠BAD+∠CDA)=80°,
∴∠E=180°-(∠DAE+∠ADE)=100°;
(2)∠E+∠F=180°.理由如下:
∵∠BAD+∠CDA+∠ABC+∠BCD=360°,
∵四邊形ABCD的內(nèi)角∠BAD、∠CDA的角平分線交于點(diǎn)E,∠ABC、∠BCD的角平分線交于點(diǎn)F,
∴∠DAE+∠ADE+∠FBC+∠BCF=180°,
∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,
∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,
∴∠E+∠F=360°-(∠DAE+∠ADE+∠FBC+∠BCF)=180°;
(3)AB∥CD.
故答案為200°;100°;AB∥CD.
點(diǎn)評(píng) 本題考查了三角形、四邊形內(nèi)角和定理,角平分線定義,平行線的判定,等式的性質(zhì),利用數(shù)形結(jié)合,理清角度之間的關(guān)系是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a2<b2 | B. | -3+a<-3+b | C. | -2a>-2b | D. | a3<b3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com