欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.如圖,點C是以AB為直徑的圓O上一點,直線AC與過B點的切線相交于D,點E是BD的中點,直線CE交直線AB于點F.
(1)求證:CF是⊙O的切線;
(2)若ED=3,EF=5,求⊙O的半徑.

分析 (1)連CB、OC,根據(jù)切線的性質(zhì)得∠ABD=90°,根據(jù)圓周角定理由AB是直徑得到∠ACB=90°,即∠BCD=90°,則根據(jù)直角三角形斜邊上的中線性質(zhì)得CE=BE,于是得到∠OBC+∠CBE=∠OCB+∠BCE=90°,然后根據(jù)切線的判定定理得CF是⊙O的切線;
(2)CE=BE=DE=3,于是得到CF=CE+EF=4,然后根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

解答 (1)證明:連CB、OC,如圖,
∵BD為⊙O的切線,
∴DB⊥AB,
∴∠ABD=90°,
∵AB是直徑,
∴∠ACB=90°,
∴∠BCD=90°,
∵E為BD的中點,
∴CE=BE,
∴∠BCE=∠CBE,
而∠OCB=∠OBC,
∴∠OBC+∠CBE=∠OCB+∠BCE=90°,
∴OC⊥CF,
∴CF是⊙O的切線;

(2)解:CE=BE=DE=3,
∵EF=5,
∴CF=CE+EF=8,
∵∠ABD=90°,
∴∠EBF=90°,
∵∠OCF=90°,
∴∠EBF=∠OCF,
∵∠F=∠F,
∴△EBF∽△OCF,
∴$\frac{BE}{BF}=\frac{OC}{CF}$,
∴$\frac{3}{4}=\frac{OC}{8}$,
∴OC=6,
即⊙O的半徑為6.

點評 本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了勾股定理、圓周角定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=-$\frac{8}{x}$的圖象交于A、B兩點,且點A的橫坐標(biāo)與點B的縱坐標(biāo)都是-2.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)直接寫出x取何值時,反比例函數(shù)的函數(shù)值大于一次函數(shù)的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.計算:
(1)$\root{3}{1-\frac{37}{64}}$
(2)$\sqrt{3}$($\sqrt{3}$+$\frac{2}{\sqrt{3}}$)
(3)|1-$\sqrt{2}$|+|$\sqrt{2}$-$\sqrt{3}$|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在平面直角坐標(biāo)系中,直線y=k1x+2與x軸交于點A,與y軸交于點C,與反比例函數(shù)y=$\frac{{k}_{2}}{x}$在第一象限內(nèi)的圖象交于點B,連接BO,若S△OBC=1,tan∠BOC=$\frac{1}{3}$,求k2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.(1)計算:$\sqrt{8}$-(2016-π)0-4cos45°+(-3)2
(2)解方程組$\left\{\begin{array}{l}{x+2y=5}\\{3x-2y=-1}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,8),點P在邊BC上以每秒1個單位長的速度由點C向點B運動,同時點Q在邊AB上以每秒a個單位長的速度由點A向點B運動,運動時間為t秒(t>0).
(1)若反比例函數(shù)y=$\frac{m}{x}$圖象經(jīng)過P點、Q點,求a的值;
(2)若OQ垂直平分AP,求a的值;
(3)當(dāng)Q點運動到AB中點時,是否存在a使△OPQ為直角三角形?若存在,求出a的值,若不存在請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x+k的圖象與反比例函數(shù)y=-$\frac{4}{x}$的圖象交于點A(-4,n)和點B.
(1)求k的值和點B的坐標(biāo);
(2)若P是x軸上一點,且AP=AB,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,正方形網(wǎng)格中的每個小正方形邊長都是1,任意連結(jié)這些小正方形的頂點,可得到一些線段,請在圖中畫出△ABC,使得AB=5,AC=$\sqrt{10}$,BC=$\sqrt{17}$,并求出此三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.下列說法中,不正確的是( 。
A.經(jīng)過直線外一點,有且只有一條直線與這條直線平行
B.在同一平面內(nèi),垂直于同一條直線的兩條直線互相平行
C.如果∠1與∠2是同位角,那么∠1=∠2
D.平移不改變圖形的形狀和大小

查看答案和解析>>

同步練習(xí)冊答案