分析 利用三角形中線的性質(zhì)、中位線的定義和性質(zhì)證得四邊形EFGD的對(duì)邊DE∥GF,且DE=GF=$\frac{1}{2}$BC;然后由平行四邊形的判定--對(duì)邊平行且相等的四邊形是平行四邊形,繼而證得結(jié)論.
解答 證明:
連接DE,F(xiàn)G,
∵BD、CE是△ABC的中線,
∴D,E是AB,AC邊中點(diǎn),![]()
∴DE∥BC,DE=$\frac{1}{2}$BC,
同理:FG∥BC,F(xiàn)G=$\frac{1}{2}$BC,
∴DE∥FG,DE=FG,
∴四邊形DEFG是平行四邊形,
∴EF∥DG,EF=DG.
點(diǎn)評(píng) 本題考查了三角形中位線定理、平行四邊形的判定.平行四邊形的判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;一組對(duì)邊平行,一組對(duì)角相等的四邊形是平行四邊形
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $96\sqrt{3}$m2 | B. | $64\sqrt{3}$m2 | C. | $32\sqrt{3}$m2 | D. | $16\sqrt{3}$m2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目: 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com