分析 (1)由AE=DF,∠A=∠D,AB=DC,易證得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四邊形BFCE是平行四邊形;
(2)當(dāng)四邊形BFCE是菱形時(shí),BE=CE,根據(jù)菱形的性質(zhì)即可得到結(jié)果.
解答 (1)證明:∵AB=DC,
∴AC=DB,
在△AEC和△DFB中,
$\left\{\begin{array}{l}{AC=DB}\\{∠A=∠D}\\{AE=DF}\end{array}\right.$,
∴△AEC≌△DFB(SAS),
∴BF=EC,∠ACE=∠DBF,
∴EC∥BF,
∴四邊形BFCE是平行四邊形;
(2)解:當(dāng)四邊形BFCE是菱形時(shí),BE=CE,
∵AD=8,DC=3,AB=CD=3,
∴BC=8-3-3=2,
∵∠EBD=60°,
∴BE=BC=2,
∴當(dāng)四邊形BFCE是菱形時(shí),BE的長(zhǎng)是2.
點(diǎn)評(píng) 此題考查了全等三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)、菱形的判定與性質(zhì)等知識(shí).此題綜合性較強(qiáng),難度適中,注意數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線(xiàn)的作法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| 工作總量 | 工作時(shí)間 | 工作效率 | |
| 計(jì)劃 | 1200 | $\frac{1200}{x}$ | x |
| 實(shí)際 | 1200 | $\frac{1200}{1.2x}$ | 1.2x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -2x2 | B. | 8x-2 | C. | 2-8x | D. | 0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com