分析 分別作∠A與∠B角平分線,交點為P.由三線合一可知AP與BP為CD、CE垂直平分線;再由垂徑定理可知圓心O在CD、CE垂直平分線上,則交點P與圓心O重合,即圓心O是一個定點;連OC,若半徑OC最短,則OC⊥AB,由△AOB為底邊4,底角30°的等腰三角形,由此即可解決問題.
解答 解:如圖,分別作∠A與∠B角平分線,交點為P.
∵△ACD和△BCE都是等邊三角形,![]()
∴AP與BP為CD、CE垂直平分線.
又∵圓心O在CD、CE垂直平分線上,則交點P與圓心O重合,即圓心O是一個定點.
連接OC.
若半徑OC最短,則OC⊥AB.
又∵∠OAC=∠OBC=30°,AB=4,
∴OA=OB,
∴AC=BC=2,
∴在直角△AOC中,OC=AC•tan∠OAC=2×tan30°=$\frac{2}{3}$$\sqrt{3}$.
故答案為$\frac{2}{3}\sqrt{3}$.
點評 本題考查了圓的綜合題.需要掌握等邊三角形的“三線合一”的性質(zhì),三角形的外接圓圓心為三角形的垂心,點到直線的距離垂線段最短以及解直角三角形等知識點.難度不大,注意數(shù)形結(jié)合數(shù)學(xué)思想的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com