分析 (1)設(shè)使用舊設(shè)備每天能修路x米,則使用新設(shè)備后每天能修路(1+50)x=1.5x(米),根據(jù)題意,列出方程$\frac{1860}{x}-(17+\frac{1860-17x}{1.5x})=15$,即可解答;
(2)設(shè)修建這條公路的總費(fèi)用為W元,則W=16000m+25000n,由30m+45n=1500,得到m=$\frac{100-3n}{2}$,則W=16000×$\frac{100-3n}{2}$+25000n=800000+1000n,根據(jù)16≤n≤26,利用一次函數(shù)的增減性即可解答.
解答 解:(1)設(shè)使用舊設(shè)備每天能修路x米,則使用新設(shè)備后每天能修路(1+50)x=1.5x(米),
根據(jù)題意得:$\frac{1860}{x}-(17+\frac{1860-17x}{1.5x})=15$,
解得:x=30,
當(dāng)x=30時,1.5x≠0,
∴x=30是分式方程的解,
1.5x=45,
答;工程隊(duì)在使用新設(shè)備后每天能修路45米.
(2)設(shè)修建這條公路的總費(fèi)用為W元,
則W=16000m+25000n,
∵30m+45n=1500,
∴m=$\frac{100-3n}{2}$,
把m=$\frac{100-3n}{2}$代入W=16000m+25000n得;
W=16000×$\frac{100-3n}{2}$+25000n=800000+1000n,
∵k=1000>0,
∴W隨n的增大而增大,
∵16≤n≤26,
∴當(dāng)n=16時,W有最小值,最小值為;800000+16000=816000(元),
m=$\frac{100-3×16}{2}$=26,
答:當(dāng)m=26,n=16時,修建這條公路的總費(fèi)用最少,最少費(fèi)用為816000元.
點(diǎn)評 本題考查了一次函數(shù)的應(yīng)用,解決本題的關(guān)鍵是利用一次函數(shù)的增減性解決最值問題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5cm,5cm,10cm | B. | 5cm,9cm,3cm | C. | 4cm,1cm,3cm | D. | 6cm,8cm,10cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 銳角三角形 | B. | 直角三角形 | C. | 鈍角三角形 | D. | 不能確定 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com