分析 (1)連接OE,由AC是⊙O的切線,得OE⊥AC,再根據(jù)題意得OE∥BF,則∠OED=∠F,OD=OE,從而得出∠F=∠BDF,即BD=NF;
(2)設(shè)⊙O的半徑為r,由OE∥BF,可證明△AOE∽△ABC,根據(jù)相似三角形的性質(zhì)得到$\frac{AO}{AB}=\frac{OE}{BC}$,即可求得r,進(jìn)而得出⊙O的面積.
解答 (1)證明:連接OE,∵AC是⊙O的切線,![]()
∴OE⊥AC
又∵∠ACB=90°,
∴OE∥BF,
∴∠OED=∠F,
∵OD=OE,
∴∠OED=∠BDF,
∴∠F=∠BDF,
即BD=BF;
(2)解:設(shè)⊙O的半徑為r,則AO=12-r,
∵OE∥BF,
∴△AOE∽△ABC,
∴$\frac{AO}{AB}=\frac{OE}{BC}$,即$\frac{12-r}{12}=\frac{r}{6}$,
解得r=4,
∴S⊙O=42π=16π.
點評 本題考查了切線的性質(zhì),相似三角形的判定和性質(zhì),本題涉及的知識點:兩直線平行,等腰三角形的判定、三角形相似、圓的面積.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com