| A. | 10 | B. | $\frac{15}{2}$ | C. | $\frac{40}{3}$ | D. | $\frac{20}{3}$ |
分析 由AB為直徑和PC⊥CQ可得出∠PCQ=90°=∠ACB,又由∠P與∠A為同弦所對(duì)的圓周角,可得出∠P=∠A,從而得出△ACB∽△PCQ,即得出CQ=$\frac{CB}{AC}$•CP,由tan∠ABC的值可得出CQ=$\frac{4}{3}$CP,當(dāng)CP最大時(shí),CQ也最大,而CP為圓內(nèi)一弦,故CP最大為直徑,由此得出CQ的最大值.
解答 解:∵線段AB為⊙O的直徑,![]()
∴∠ACB=90°.
∵CQ⊥PC,
∴∠PCQ=90°=∠ACB,
又∵∠P=∠A(同弦圓周角相等),
∴△ACB∽△PCQ,
∴$\frac{CQ}{CB}$=$\frac{CP}{AC}$.
在Rt△ACB中,tan∠ABC=$\frac{3}{4}$,
∴$\frac{AC}{BC}=\frac{3}{4}$,
∴CQ=$\frac{CB}{AC}$•CP=$\frac{4}{3}$CP.
∵線段CP是⊙O內(nèi)一弦,
∴當(dāng)CP過(guò)圓心O時(shí),CP最大,且此時(shí)CP=10.
∴CQ=$\frac{4}{3}$×10=$\frac{40}{3}$.
故選C.
點(diǎn)評(píng) 本題考查了圓周角定理、相似三角形的判定及性質(zhì).解題的關(guān)鍵是得出CQ=$\frac{4}{3}$CP.本題屬于中檔題,難度不大,在解決該題中巧妙的運(yùn)用了三角形相似得出比例關(guān)系,化求CQ的最值為求CP的最值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5個(gè) | B. | 4個(gè) | C. | 6個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com