分析 首先作出函數(shù)y=x2+|2x2-1|的圖象,根據(jù)函數(shù)的圖象即可確定b的取值.
解答 解:當(dāng)2x2-1≤0時(shí),即-$\frac{\sqrt{2}}{2}$≤x≤$\frac{\sqrt{2}}{2}$,y=x2+|2x2-1|=-x2+1;
當(dāng)2x2-1>0時(shí),即x<-$\frac{\sqrt{2}}{2}$或x>$\frac{\sqrt{2}}{2}$,y=x2+|2x2-1|=3x2-1;
作出函數(shù)的圖象如圖:![]()
故要使函數(shù)y=$\frac{1}{2}$x+b與函數(shù)y=x2+|2x2-1|的圖象有且只有三個(gè)交點(diǎn),則
$\frac{1}{2}$×(-$\frac{\sqrt{2}}{2}$)+b=$\frac{1}{2}$,解得b=$\frac{1}{2}$+$\frac{\sqrt{2}}{4}$;
或$\frac{1}{2}$×(-$\frac{\sqrt{2}}{2}$)+b=1,解得b=1+$\frac{\sqrt{2}}{4}$.
故b的值為$\frac{1}{2}$+$\frac{\sqrt{2}}{4}$或1+$\frac{\sqrt{2}}{4}$.
故答案為:$\frac{1}{2}$+$\frac{\sqrt{2}}{4}$或1+$\frac{\sqrt{2}}{4}$.
點(diǎn)評(píng) 本題考查了二次函數(shù)的圖象及一次函數(shù)的圖象,首先作出分段函數(shù)的圖象是解決本題的關(guān)鍵,采用數(shù)形結(jié)合的方法確定答案是數(shù)學(xué)上常用的方法之一.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | b2>4ac | |
| B. | 關(guān)于x的一元二次方程ax2+bx+c=-4的兩根為-5和-1 | |
| C. | ax2+bx+c≥-6 | |
| D. | 若點(diǎn)(-2,m),(-5,n)在拋物線上,則m>n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 5個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com