欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

滿足“對定義域內(nèi)任意實數(shù)x,y,f(x?y)=f(x)+f(y)”的函數(shù)可以是( 。
A.f(x)=x2B.f(x)=2xC.f(x)=log2xD.f(x)=elnx
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

滿足“對定義域內(nèi)任意實數(shù)x,y,f(x•y)=f(x)+f(y)”的函數(shù)可以是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

滿足“對定義域內(nèi)任意實數(shù)x,y,f(x•y)=f(x)+f(y)”的函數(shù)可以是( 。
A.f(x)=x2B.f(x)=2xC.f(x)=log2xD.f(x)=elnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州二中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

滿足“對定義域內(nèi)任意實數(shù)x,y,f=f(x)+f(y)”的函數(shù)可以是( )
A.f(x)=x2
B.f(x)=2x
C.f(x)=log2
D.f(x)=elnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州市甌海中學(xué)高一(上)12月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

滿足“對定義域內(nèi)任意實數(shù)x,y,f=f(x)+f(y)”的函數(shù)可以是( )
A.f(x)=x2
B.f(x)=2x
C.f(x)=log2
D.f(x)=elnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

滿足“對定義域內(nèi)任意實數(shù)x,y,f(x•y)=f(x)+f(y)”的函數(shù)可以是


  1. A.
    f(x)=x2
  2. B.
    f(x)=2x
  3. C.
    f(x)=log2x
  4. D.
    f(x)=elnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-
1
x

(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.請結(jié)合(I)中的結(jié)論證明x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省豫東、豫北十所名校高三測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx +b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx +b為曲線f(x)與g(x)的“左同旁切線”.已知

    (I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;

    (Ⅱ)設(shè)P(是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得.請結(jié)合(I)中的結(jié)論證明:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義:已知函數(shù)f(x)與g(x),若存在一條直線y="kx" +b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y="kx" +b為曲線f(x)與g(x)的“左同旁切線”.已知
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得.請結(jié)合(I)中的結(jié)論證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-數(shù)學(xué)公式
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得f′(x3)=數(shù)學(xué)公式.請結(jié)合(I)中的結(jié)論證明x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2002-2013學(xué)年江蘇省泰州二中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得f′(x3)=.請結(jié)合(I)中的結(jié)論證明x1<x3<x2

查看答案和解析>>


同步練習(xí)冊答案