欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=n2an(n∈N*),可歸納猜想出Sn的表達(dá)式為(  )
A.
2n
n+1
B.
3n-1
n+1
C.
2n+1
n+2
D.
2n
n+2
A
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=4,Sn=nan+2-
n(n-1)
2
,(n≥2,n∈N*)

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足:b1=4,且bn+1=bn2-(n-1)bn-2,(n∈N*),
求證:bn>an,(n≥2,n∈N*);
(Ⅲ)求證:(1+
1
b2b3
)(1+
1
b3b4
)(1+
1
b4b5
)…(1+
1
bnbn+1
)<
3e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列an的前n項(xiàng)和為Sn,且a1=1,Sn=n2an(n∈N),
(1)試計(jì)算S1,S2,S3,S4,并猜想Sn的表達(dá)式;
(2)證明你的猜想,并求出an的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

9、已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=Sn(n∈N*),則Sn=
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=2Sn
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項(xiàng)公式an;
(3)設(shè)bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=4,Sn=nan+2-
n(n-1)
2
,(n≥2,n∈N*)

(I)求數(shù)列{an}的通項(xiàng)公式;
(II) 已知bn>an,(n≥2,n∈N*),求證:(1+
1
b2b3
)(1+
1
b3b4
)(1+
1
b4b5
)…(1+
1
bnbn+1
3e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=4,Sn=nan+2-
n(n-1)2
,(n≥2,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足:b1=4,且bn+1=bn2-(n-1)bn-2(n∈N*),求證:bn>an,(n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=3,Sn+1=2Sn+3-n,數(shù)列{bn}滿足b1=3,bn+1=λbn+an-1.
(I)求數(shù)列{an}的通項(xiàng)公式an
(II)是否存在實(shí)數(shù)λ,使數(shù)列{bn}為等差數(shù)列或等比數(shù)列?若存在,求出數(shù)列{bn}的通項(xiàng)公式,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=n2an(n∈N*).
(1)求S1,S2,S3,S4的值;
(2)猜想Sn的表達(dá)式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,a2=3,2Sn-(n+1)an=An+B(其中A、B是常數(shù),n∈N*).
(1)求A、B的值;
(2)求證數(shù)列{
an
n
+
1
n
}
是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式an;
(3)已知k是正整數(shù),不等式8an+1-an2<k對(duì)n∈N*都成立,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=n2an(n∈N*),可歸納猜想出Sn的表達(dá)式為( 。

查看答案和解析>>


同步練習(xí)冊(cè)答案