已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=2Sn.
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項(xiàng)公式an;
(3)設(shè)bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn.
分析:(1)由a
1=1,a
n+1=2s
n,分別令n=1,2,3求出a
2,a
3,a
4的值;
(2)由a
n+1=2s
n及
an=求得a
n,
(3)把(2)求得a
n代入中b
n,應(yīng)用錯(cuò)位相減法求和.
解答:解:(1)∵a
1=1,
∴a
2=2a
1=2,a
3=2S
2=6,a
4=2S
3=18,
(2)∵a
n+1=2S
1,∴a
N=2S
n-1(n≥2),
∴a
n+1-a
n=2a
n,
=3(n≥2)
又
=2,∴數(shù)列{a
n}自第2項(xiàng)起是公比為3的等比數(shù)列,
∴
an=,
(3)∵b
n=na
n,∴
bn=,
∴T
n=1+2×2×3
0+2×3×3
1+2×4×3
2++2×n×3
n-2,…①
3T
n=3+2×2×3
1+2×3×3
2+2×4×3
3++2×n×3
n-1…②(12分)
①-②得-2T
n=-2+2×2×3
0+2×3
1+2×3
2++2×3
n-2-2×n×3
n-1=2+2(3+3
2+3
3++3
n-2)-2n×3
n-1=(1-2n)×3
n-1-1
∴
Tn=(n-)×3n-1+.(14分)
點(diǎn)評(píng):由數(shù)列前n 項(xiàng)和求數(shù)列通項(xiàng)公式時(shí),一定注意n=1的情況,體現(xiàn)了分類討論的數(shù)學(xué)思想;屬中檔題.