18. 解:(1)點(diǎn)
在
軸上························································································· 1分
理由如下:
連接
,如圖所示,在
中,
,
,![]()
,![]()
由題意可知:![]()
![]()
點(diǎn)
在
軸上,
點(diǎn)
在
軸上.············································································ 3分
(2)過點(diǎn)
作
軸于點(diǎn)![]()
,![]()
在
中,
,![]()
點(diǎn)
在第一象限,
點(diǎn)
的坐標(biāo)為
····························································································· 5分
由(1)知
,點(diǎn)
在
軸的正半軸上
點(diǎn)
的坐標(biāo)為![]()
點(diǎn)
的坐標(biāo)為
······························································································· 6分
拋物線
經(jīng)過點(diǎn)
,
![]()
由題意,將
,
代入
中得
解得![]()
所求拋物線表達(dá)式為:
·························································· 9分
(3)存在符合條件的點(diǎn)
,點(diǎn)
.············································································ 10分
理由如下:
矩形
的面積![]()
以
為頂點(diǎn)的平行四邊形面積為
.
由題意可知
為此平行四邊形一邊,
又![]()
邊上的高為2······································································································ 11分
依題意設(shè)點(diǎn)
的坐標(biāo)為![]()
點(diǎn)
在拋物線
上
![]()
解得,
,![]()
,![]()
以
為頂點(diǎn)的四邊形是平行四邊形,
![]()
,
,
當(dāng)點(diǎn)
的坐標(biāo)為
時,
點(diǎn)
的坐標(biāo)分別為
,
;
當(dāng)點(diǎn)
的坐標(biāo)為
時,
點(diǎn)
的坐標(biāo)分別為
,
.·················································· 14分
(以上答案僅供參考,如有其它做法,可參照給分)
17. 解:(1)
直線
與
軸交于點(diǎn)
,與
軸交于點(diǎn)
.
,
······························································································· 1分
點(diǎn)
都在拋物線上,
![]()
拋物線的解析式為
······························································ 3分
頂點(diǎn)
····································································································· 4分
(2)存在····················································································································· 5分
··················································································································· 7分
·················································································································· 9分
(3)存在···················································································································· 10分
理由:
解法一:
延長
到點(diǎn)
,使
,連接
交直線
于點(diǎn)
,則點(diǎn)
就是所求的點(diǎn).
··························································································· 11分
過點(diǎn)
作
于點(diǎn)
.
點(diǎn)在拋物線
上,![]()
在
中,
,
,
,
在
中,
,
,
,
····················································· 12分
設(shè)直線
的解析式為![]()
解得![]()
······································································································ 13分
解得
![]()
在直線
上存在點(diǎn)
,使得
的周長最小,此時
.········· 14分
解法二:
過點(diǎn)
作
的垂線交
軸于點(diǎn)
,則點(diǎn)
為點(diǎn)
關(guān)于直線
的對稱點(diǎn).連接
交
于點(diǎn)
,則點(diǎn)
即為所求.···················································································· 11分
過點(diǎn)
作
軸于點(diǎn)
,則
,
.
,![]()
![]()
同方法一可求得
.
在
中,
,
,可求得
,
為線段
的垂直平分線,可證得
為等邊三角形,
垂直平分
.
即點(diǎn)
為點(diǎn)
關(guān)于
的對稱點(diǎn).
··················································· 12分
設(shè)直線
的解析式為
,由題意得
解得![]()
······································································································ 13分
解得
![]()
在直線
上存在點(diǎn)
,使得
的周長最小,此時
. 1
16.
解:(1)
,
.
![]()
![]()
(2)當(dāng)
時,過
點(diǎn)作
,交
于
,如圖1,
則
,
,
,
.
(3)①
能與
平行.
若
,如圖2,則
,
即
,
,而
,
.
②
不能與
垂直.
若
,延長
交
于
,如圖3,
則
.
.
![]()
![]()
.
又
,
,
,
,而
,
不存在.
15. 解:(1)解法1:根據(jù)題意可得:A(-1,0),B(3,0);
則設(shè)拋物線的解析式為
(a≠0)
又點(diǎn)D(0,-3)在拋物線上,∴a(0+1)(0-3)=-3,解之得:a=1
∴y=x2-2x-3···································································································· 3分
自變量范圍:-1≤x≤3···················································································· 4分
解法2:設(shè)拋物線的解析式為
(a≠0)
根據(jù)題意可知,A(-1,0),B(3,0),D(0,-3)三點(diǎn)都在拋物線上
∴
,解之得:![]()
∴y=x2-2x-3··············································································· 3分
自變量范圍:-1≤x≤3······························································ 4分
(2)設(shè)經(jīng)過點(diǎn)C“蛋圓”的切線CE交x軸于點(diǎn)E,連結(jié)CM,
在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=![]()
在Rt△MCE中,∵OC=2,∠CMO=60°,∴ME=4
∴點(diǎn)C、E的坐標(biāo)分別為(0,
),(-3,0) ·················································· 6分
∴切線CE的解析式為
··························································· 8分
(3)設(shè)過點(diǎn)D(0,-3),“蛋圓”切線的解析式為:y=kx-3(k≠0) ·························· 9分
由題意可知方程組
只有一組解
即
有兩個相等實(shí)根,∴k=-2············································· 11分
∴過點(diǎn)D“蛋圓”切線的解析式y=-2x-3····················································· 12分
14.
解:(1)由題意可知,
.
解,得 m=3. ………………………………3分
∴ A(3,4),B(6,2);
∴ k=4×3=12. ……………………………4分
(2)存在兩種情況,如圖:
①當(dāng)M點(diǎn)在x軸的正半軸上,N點(diǎn)在y軸的正半軸
上時,設(shè)M1點(diǎn)坐標(biāo)為(x1,0),N1點(diǎn)坐標(biāo)為(0,y1).
∵ 四邊形AN1M1B為平行四邊形,
∴ 線段N1M1可看作由線段AB向左平移3個單位,
再向下平移2個單位得到的(也可看作向下平移2個單位,再向左平移3個單位得到的).
由(1)知A點(diǎn)坐標(biāo)為(3,4),B點(diǎn)坐標(biāo)為(6,2),
∴ N1點(diǎn)坐標(biāo)為(0,4-2),即N1(0,2); ………………………………5分
M1點(diǎn)坐標(biāo)為(6-3,0),即M1(3,0). ………………………………6分
設(shè)直線M1N1的函數(shù)表達(dá)式為
,把x=3,y=0代入,解得
.
∴ 直線M1N1的函數(shù)表達(dá)式為
. ……………………………………8分
②當(dāng)M點(diǎn)在x軸的負(fù)半軸上,N點(diǎn)在y軸的負(fù)半軸上時,設(shè)M2點(diǎn)坐標(biāo)為(x2,0),N2點(diǎn)坐標(biāo)為(0,y2).
∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,
∴ N1M1∥M2N2,N1M1=M2N2.
∴ 線段M2N2與線段N1M1關(guān)于原點(diǎn)O成中心對稱.
∴ M2點(diǎn)坐標(biāo)為(-3,0),N2點(diǎn)坐標(biāo)為(0,-2). ………………………9分
設(shè)直線M2N2的函數(shù)表達(dá)式為
,把x=-3,y=0代入,解得
,
∴ 直線M2N2的函數(shù)表達(dá)式為
.
所以,直線MN的函數(shù)表達(dá)式為
或
. ………………11分
(3)選做題:(9,2),(4,5). ………………………………………………2分
13. 解:(1)分別過D,C兩點(diǎn)作DG⊥AB于點(diǎn)G,CH⊥AB于點(diǎn)H. ……………1分
∵ AB∥CD,
∴ DG=CH,DG∥CH.
∴ 四邊形DGHC為矩形,GH=CD=1.
∵ DG=CH,AD=BC,∠AGD=∠BHC=90°,
∴ △AGD≌△BHC(HL).
∴ AG=BH=
=3. ………2分
∵ 在Rt△AGD中,AG=3,AD=5,
∴ DG=4.
∴
. ………………………………………………3分
(2)∵ MN∥AB,ME⊥AB,NF⊥AB,
∴ ME=NF,ME∥NF.
∴ 四邊形MEFN為矩形.
∵ AB∥CD,AD=BC,
∴ ∠A=∠B.
∵ ME=NF,∠MEA=∠NFB=90°,
∴ △MEA≌△NFB(AAS).
∴ AE=BF. ……………………4分
設(shè)AE=x,則EF=7-2x. ……………5分
∵ ∠A=∠A,∠MEA=∠DGA=90°,
∴ △MEA∽△DGA.
∴
.
∴ ME=
.
…………………………………………………………6分
∴
. ……………………8分
當(dāng)x=
時,ME=
<4,∴四邊形MEFN面積的最大值為
.……………9分
(3)能. ……………………………………………………………………10分
由(2)可知,設(shè)AE=x,則EF=7-2x,ME=
.
若四邊形MEFN為正方形,則ME=EF.
即
7-2x.解,得
. ……………………………………………11分
∴ EF=
<4.
∴ 四邊形MEFN能為正方形,其面積為
.
12. 解:(1)
.····················································································· 3分
(2)相等,比值為
.················· 5分(無“相等”不扣分有“相等”,比值錯給1分)
(3)設(shè)
,
在矩形
中,
,
,
,
,
,
.···································································································· 6分
同理
.
,
,
.······························································································· 7分
,
,······························································································ 8分
解得
.
即
.······································································································ 9分
(4)
,·············································································································· 10分
. 12分
11. 解:(1)設(shè)
地經(jīng)杭州灣跨海大橋到寧波港的路程為
千米,
由題意得
,································································································ 2分
解得
.
地經(jīng)杭州灣跨海大橋到寧波港的路程為180千米.················································· 4分
(2)
(元),
該車貨物從
地經(jīng)杭州灣跨海大橋到寧波港的運(yùn)輸費(fèi)用為380元.···························· 6分
(3)設(shè)這批貨物有
車,
由題意得
,···························································· 8分
整理得
,
解得
,
(不合題意,舍去),································································ 9分
這批貨物有8車.···································································································· 10分
10.
![]()
![]()
![]()
![]()
9.
![]()
![]()
![]()
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com