科目: 來(lái)源: 題型:
【題目】已知橢圓
:
的左、右焦點(diǎn)分別為
,
,若橢圓經(jīng)過(guò)點(diǎn)
,且△PF1F2的面積為2.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率為1的直線
與以原點(diǎn)為圓心,半徑為
的圓交于A,B兩點(diǎn),與橢圓C交于C,D兩點(diǎn),且
(
),當(dāng)
取得最小值時(shí),求直線
的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn)O,
軸正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)C的極坐標(biāo)為
,若直線l經(jīng)過(guò)點(diǎn)P,且傾斜角為
,圓C的半徑為4.
(1).求直線l的參數(shù)方程及圓C的極坐標(biāo)方程;
(2).試判斷直線l與圓C有位置關(guān)系.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖是函數(shù)
在區(qū)間
上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將
的圖象上的所有點(diǎn)( )
![]()
A.向左平移
個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
,縱坐標(biāo)不變
B.向左平移
個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變
C.向左平移
個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
,縱坐標(biāo)不變
D.向左平移
個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(2)當(dāng)
時(shí),求證:函數(shù)
恰有兩個(gè)零點(diǎn).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】以平面直角坐標(biāo)系中的坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半抽為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
,直線
的參數(shù)方程是
(
為參數(shù)).
(1)求曲線
的直角坐標(biāo)方程;
(2)若直線
與曲線
交于
、
兩點(diǎn),且
,求直線
的傾斜角
.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知點(diǎn)
在橢圓
上,
、
分別為
的左、右頂點(diǎn),直線
與
的斜率之積為
,
為橢圓的右焦點(diǎn),直線
.
(1)求橢圓
的方程;
(2)直線
過(guò)點(diǎn)
且與橢圓
交于
、
兩點(diǎn),直線
、
分別與直線
交于
、
兩點(diǎn).試問(wèn):以
為直徑的圓是否過(guò)定點(diǎn)?如果是,求出定點(diǎn)坐標(biāo),否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某學(xué)校為了解學(xué)生假期參與志愿服務(wù)活動(dòng)的情況,隨機(jī)調(diào)查了
名男生,
名女生,得到他們一周參與志愿服務(wù)活動(dòng)時(shí)間的統(tǒng)計(jì)數(shù)據(jù)如右表(單位:人):
超過(guò) | 不超過(guò) | |
男 |
|
|
女 |
|
|
(1)能否有
的把握認(rèn)為該校學(xué)生一周參與志愿服務(wù)活動(dòng)時(shí)間是否超過(guò)
小時(shí)與性別有關(guān)?
(2)以這
名學(xué)生參與志愿服務(wù)活動(dòng)時(shí)間超過(guò)
小時(shí)的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機(jī)抽查
名學(xué)生,試估計(jì)這
名學(xué)生中一周參與志愿服務(wù)活動(dòng)時(shí)間超過(guò)
小時(shí)的人數(shù).
附:
|
|
|
|
|
|
|
|
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,直線
經(jīng)過(guò)點(diǎn)
,其傾斜角為
,以原點(diǎn)
為極點(diǎn),以
軸非負(fù)半軸為極軸,與直角坐標(biāo)系
取相同的長(zhǎng)度單位,建立極坐標(biāo)系,設(shè)曲線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和極坐標(biāo)方程;
(2)若直線
與曲線
有公共點(diǎn),求
的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知
,
,
順次是橢圓
:
的右頂點(diǎn)、上頂點(diǎn)和下頂點(diǎn),橢圓
的離心率
,且
.
(1)求橢圓
的方程;
(2)若斜率
的直線
過(guò)點(diǎn)
,直線
與橢圓
交于
,
兩點(diǎn),試判斷:以
為直徑的圓是否經(jīng)過(guò)點(diǎn)
,并證明你的結(jié)論.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com