科目: 來源: 題型:
【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進的甲公司前期的經(jīng)營狀況,對該公司2019年連續(xù)六個月的利潤進行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應的折線圖,如圖所示:
![]()
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤
(單位:百萬元)與月份代碼
之間的關(guān)系,求
關(guān)于
的線性回歸方程,并預測該公司2020年4月份的利潤;
(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有A,B兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個月,但新材料的不穩(wěn)定性會導致材料的使用壽命不同,現(xiàn)對A,B兩種型號的新型材料對應的產(chǎn)品各100件進行科學模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:
![]()
經(jīng)甲公司測算平均每件新型材料每月可以帶來6萬元收人入,不考慮除采購成本之外的其他成本,A型號材料每件的采購成本為10萬元,B型號材料每件的采購成本為12萬元.假設每件新型材料的使用壽命都是整月數(shù),且以頻率作為每件新型材料使用壽命的概率,如果你是甲公司的負責人,以每件新型材料產(chǎn)生利潤的平均值為決策依據(jù),你會選擇采購哪款新型材料?
參考數(shù)據(jù):
,
.
參考公式:回歸直線方程
,其中
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知極點為直角坐標系的原點,極軸為x軸正半軸且單位長度相同的極坐標系中曲線
,
(t為參數(shù)).
(1)求曲線
上的點到曲線
距離的最小值;
(2)若把
上各點的橫坐標都擴大到原來的2倍,縱坐標都擴大到原來的
倍,得到曲線
,設
,曲線
與
交于A,B兩點,求
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(
,
).
(1)當
時,若函數(shù)
在
上有兩個零點,求
的取值范圍;
(2)當
時,是否存在
,使得不等式
恒成立?若存在,求出
的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知三棱錐
中,
與
均為等腰直角三角形,且
,
,
為
上一點,且
平面
.
![]()
(1)求證:
;
(2)過
作一平面分別交
,
,
于
,
,
,若四邊形
為平行四邊形,求多面體
的表面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進的甲公司前期的經(jīng)營狀況,對該公司2019年連續(xù)六個月的利潤進行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應的折線圖,如圖所示:
![]()
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤
(單位:百萬元)與月份代碼
之間的關(guān)系,求
關(guān)于
的線性回歸方程,并預測該公司2020年4月份的利潤;
(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有A,B兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個月,但新材料的不穩(wěn)定性會導致材料的使用壽命不同,現(xiàn)對A,B兩種型號的新型材料對應的產(chǎn)品各100件進行科學模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:
![]()
經(jīng)甲公司測算平均每件新型材料每月可以帶來6萬元收人入,不考慮除采購成本之外的其他成本,A型號材料每件的采購成本為10萬元,B型號材料每件的采購成本為12萬元.假設每件新型材料的使用壽命都是整月數(shù),且以頻率作為每件新型材料使用壽命的概率,如果你是甲公司的負責人,以每件新型材料產(chǎn)生利潤的平均值為決策依據(jù),你會選擇采購哪款新型材料?
參考數(shù)據(jù):
,
.
參考公式:回歸直線方程
,其中
.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是平面
的斜線段,A為斜足,點C滿足
,且在平面
內(nèi)運動,則有以下幾個命題:
![]()
①當
時,點C的軌跡是拋物線;
②當
時,點C的軌跡是一條直線;
③當
時,點C的軌跡是圓;
④當
時,點C的軌跡是橢圓;
⑤當
時,點C的軌跡是雙曲線.
其中正確的命題是__________.(將所有正確的命題序號填到橫線上)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)當
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若曲線
在點
處的切線
與曲線
切于點
,求
的值;
(Ⅲ)若
恒成立,求
的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設橢圓
的離心率
,左焦點為
,右頂點為
,過點
的直線交橢圓于
兩點,若直線
垂直于
軸時,有
.
(1)求橢圓的方程;
(2)設直線
:
上兩點
,
關(guān)于
軸對稱,直線
與橢圓相交于點
(
異于點
),直線
與
軸相交于點
.若
的面積為
,求直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】在某外國語學校舉行的
(高中生數(shù)學建模大賽)中,參與大賽的女生與男生人數(shù)之比為
,且成績分布在
,分數(shù)在
以上(含
)的同學獲獎.按女生、男生用分層抽樣的方法抽取
人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.
![]()
(Ⅰ)求
的值,并計算所抽取樣本的平均值
(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)填寫下面的
列聯(lián)表,并判斷在犯錯誤的概率不超過
的前提下能否認為“獲獎與女生、男生有關(guān)”.
女生 | 男生 | 總計 | |
獲獎 |
| ||
不獲獎 | |||
總計 |
| ||
附表及公式:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
其中
,
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com