科目: 來源: 題型:
【題目】已知正四棱錐
的側(cè)棱和底面邊長相等,在這個正四棱錐的
條棱中任取兩條,按下列方式定義隨機變量
的值:
若這兩條棱所在的直線相交,則
的值是這兩條棱所在直線的夾角大。ɑ《戎疲;
若這兩條棱所在的直線平行,則
;
若這兩條棱所在的直線異面,則
的值是這兩條棱所在直線所成角的大小(弧度制).
(1)求
的值;
(2)求隨機變量
的分布列及數(shù)學期望
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列
滿足奇數(shù)項
成等差,公差為
,偶數(shù)項
成等比,公比為
,且數(shù)列
的前
項和為
,
,
.
若
,
.
①求數(shù)列
的通項公式;
②若
,求正整數(shù)
的值;
若
,
,對任意給定的
,是否存在實數(shù)
,使得
對任意
恒成立?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
,其中
,
,
為自然對數(shù)的底數(shù).
若
,
,①若函數(shù)
單調(diào)遞增,求實數(shù)
的取值范圍;②若對任意
,
恒成立,求實數(shù)
的取值范圍.
若
,且
存在兩個極值點
,
,求證:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
的左頂點為
,左、右焦點分別為
,離心率為
,
是橢圓上的一個動點(不與左、右頂點重合),且
的周長為6,點
關于原點的對稱點為
,直線
交于點
.
![]()
(1)求橢圓方程;
(2)若直線
與橢圓交于另一點
,且
,求點
的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正四棱錐
的側(cè)棱和底面邊長相等,在這個正四棱錐的
條棱中任取兩條,按下列方式定義隨機變量
的值:
若這兩條棱所在的直線相交,則
的值是這兩條棱所在直線的夾角大。ɑ《戎疲;
若這兩條棱所在的直線平行,則
;
若這兩條棱所在的直線異面,則
的值是這兩條棱所在直線所成角的大小(弧度制).
(1)求
的值;
(2)求隨機變量
的分布列及數(shù)學期望
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列
滿足奇數(shù)項
成等差,公差為
,偶數(shù)項
成等比,公比為
,且數(shù)列
的前
項和為
,
,
.
若
,
.
①求數(shù)列
的通項公式;
②若
,求正整數(shù)
的值;
若
,
,對任意給定的
,是否存在實數(shù)
,使得
對任意
恒成立?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
,其中
,
,
為自然對數(shù)的底數(shù).
若
,
,①若函數(shù)
單調(diào)遞增,求實數(shù)
的取值范圍;②若對任意
,
恒成立,求實數(shù)
的取值范圍.
若
,且
存在兩個極值點
,
,求證:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
的左頂點為
,左、右焦點分別為
,離心率為
,
是橢圓上的一個動點(不與左、右頂點重合),且
的周長為6,點
關于原點的對稱點為
,直線
交于點
.
![]()
(1)求橢圓方程;
(2)若直線
與橢圓交于另一點
,且
,求點
的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在平面直角坐標系
中,
曲線
(
為參數(shù)),
(
為參數(shù)),以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
(
且
).
(1)求
與
的極坐標方程;
(2)若
與
相交于點
,
與
相交于點
,當
為何值時,
最大,并求最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某人經(jīng)營淡水池塘養(yǎng)草魚,根據(jù)過去
期的養(yǎng)殖檔案,該池塘的養(yǎng)殖重量
(百斤)都在
百斤以上,其中不足
百斤的有
期,不低于
百斤且不超過
百斤的有
期,超過
百斤的有
期.根據(jù)統(tǒng)計,該池塘的草魚重量的增加量
(百斤)與使用某種餌料的質(zhì)量
(百斤)之間的關系如圖所示.
![]()
(1)根據(jù)數(shù)據(jù)可知
與
具有線性相關關系,請建立
關于
的回歸方程
;如果此人設想使用某種餌料
百斤時,草魚重量的增加量須多于
百斤,請根據(jù)回歸方程計算,確定此方案是否可行?并說明理由.
(2)養(yǎng)魚的池塘對水質(zhì)含氧量與新鮮度要求較高,某商家為該養(yǎng)殖戶提供收費服務,即提供不超過
臺增氧沖水機,每期養(yǎng)殖使用的沖水機運行臺數(shù)與魚塘的魚重量
有如下關系:
魚的重量(單位:百斤) |
|
|
|
沖水機只需運行臺數(shù) |
|
|
|
若某臺增氧沖水機運行,則商家每期可獲利
千元;若某臺沖水機未運行,則商家每期虧損
千元.視頻率為概率,商家欲使每期沖水機總利潤的均值達到最大,應提供幾臺增氧沖水機?
附:對于一組數(shù)據(jù)
,其回歸方程
的斜率和截距的最小二乘估計公式分別為![]()
![]()
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com