科目: 來源: 題型:
【題目】“一帶一路”是“絲綢之路經(jīng)濟帶”和“21世紀海上絲綢之路”的簡稱.某市為了了解人們對“一帶一路”的認知程度,對不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識競賽,滿分100分(90分及以上為認知程度高).現(xiàn)從參賽者中抽取了
人,按年齡分成5組,第一組:
,第二組:
,第三組:
,第四組:
,第五組:
,得到如圖所示的頻率分布直方圖,已知第一組有6人.
![]()
(1)求
;
(2)求抽取的
人的年齡的中位數(shù)(結(jié)果保留整數(shù));
(3)從該市大學(xué)生、軍人、醫(yī)務(wù)人員、工人、個體戶 五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1~5組,從這5個按年齡分的組和5個按職業(yè)分的組中每組各選派1人參加知識競賽,分別代表相應(yīng)組的成績,年齡組中1~5組的成績分別為93,96,97,94,90,職業(yè)組中1~5組的成績分別為93,98,94,95,90.
(Ⅰ)分別求5個年齡組和5個職業(yè)組成績的平均數(shù)和方差;
(Ⅱ)以上述數(shù)據(jù)為依據(jù),評價5個年齡組和5個職業(yè)組對“一帶一路”的認知程度.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是平行四邊形,
,側(cè)面
底面
,
,
,
,
分別為
,
的中點,點
在線段
上.
![]()
(1)求證:
平面
;
(2)如果三棱錐
的體積為
,求點
到面
的距離.
【答案】(1)證明見解析;(2)
.
【解析】試題分析:
(1)在平行四邊形
中,得出
,進而得到
,證得
底面
,得出
,進而證得
平面
.
(2)由
到面
的距離為
,所以
面
,
為
中點,即可求解
的值.
試題解析:
證明:(1)在平行四邊形
中,因為
,
,
所以
,由
,
分別為
,
的中點,得
,所以
.
側(cè)面
底面
,且
,
底面
.
又因為
底面
,所以
.
又因為
,
平面
,
平面
,
所以
平面
.
解:(2)
到面
的距離為1,所以
面
,
為
中點,
.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)
.
(1)當(dāng)
時,求函數(shù)
在點
處的切線方程;
(2)求函數(shù)
的極值;
(3)若函數(shù)
在區(qū)間
上是增函數(shù),試確定
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線頂點在原點,焦點在
軸上,又知此拋物線上一點
到焦點的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線
相交于不同的兩點
、
,且
中點橫坐標(biāo)為2,求
的值.
【答案】(1)
;(2)2.
【解析】試題分析:
(1)由題意設(shè)拋物線方程為
,則準(zhǔn)線方程為
,解得
,即可求解拋物線的方程;
(2)由
消去
得
,根據(jù)
,解得
且
,得到
,即可求解
的值.
試題解析:
(1)由題意設(shè)拋物線方程為
(
),其準(zhǔn)線方程為
,
∵
到焦點的距離等于
到其準(zhǔn)線的距離,∴
,∴
,
∴此拋物線的方程為
.
(2)由
消去
得
,
∵直線
與拋物線相交于不同兩點
、
,則有![]()
解得
且
,
由
,解得
或
(舍去).
∴所求
的值為2.
【題型】解答題
【結(jié)束】
20
【題目】如圖,在四棱錐
中,底面
是平行四邊形,
,側(cè)面
底面
,
,
,
,
分別為
,
的中點,點
在線段
上.
![]()
(1)求證:
平面
;
(2)如果三棱錐
的體積為
,求點
到面
的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知命題
:實數(shù)
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若
,且
為真,求實數(shù)
的取值范圍;
(2)若
是
的充分不必要條件,求實數(shù)
的取值范圍.
【答案】(1)
;(2)
.
【解析】試題分析:
先由命題解
得
;命題
得
,
(1)當(dāng)
,得命題
,再由
為真,得
真且
真,即可求解
的取值范圍.
(2)由
是
的充分不必要條件,則
是
的充分必要條件,根據(jù)則
,即可求解實數(shù)
的取值范圍.
試題解析:
命題
:由題得
,又
,解得
;
命題
:
,解得
.
(1)若
,命題
為真時,
,
當(dāng)
為真,則
真且
真,
∴
解得
的取值范圍是
.
(2)
是
的充分不必要條件,則
是
的充分必要條件,
設(shè)
,
,則
;
∴
∴實數(shù)
的取值范圍是
.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線頂點在原點,焦點在
軸上,又知此拋物線上一點
到焦點的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線
相交于不同的兩點
、
,且
中點橫坐標(biāo)為2,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列
和等比數(shù)列
滿足
,
,
.
(1)求
的通項公式;
(2)求和:
.
【答案】(1)
;(2)
.
【解析】試題分析:(1)根據(jù)等差數(shù)列
的
,
,列出關(guān)于首項
、公差
的方程組,解方程組可得
與
的值,從而可得數(shù)列
的通項公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項
,公比
的方程組,解得
、
的值,求出數(shù)列
的通項公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以
.
從而
.
【題型】解答題
【結(jié)束】
18
【題目】已知命題
:實數(shù)
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若
,且
為真,求實數(shù)
的取值范圍;
(2)若
是
的充分不必要條件,求實數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知向量
,函數(shù)
的最小值為
.
(1)當(dāng)
時,求
的值;
(2)求
;
(3)已知函數(shù)
為定義在上的增函數(shù),且對任意的
都滿足
,問:是否存在這樣的實數(shù)
,使不等式
對所有
恒成立,若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某公園摩天輪的半徑為
,圓心距地面的高度為
,摩天輪做勻速轉(zhuǎn)動,每
轉(zhuǎn)一圈,摩天輪上的點
的起始位置在最低點處.
(1)已知在時刻
時
距離地面的高度
,(其中
),求
時
距離地面的高度;
(2)當(dāng)離地面
以上時,可以看到公園的全貌,求轉(zhuǎn)一圈中有多少時間可以看到公園的全貌?
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】學(xué)校從參加高一年級期中考試的學(xué)生中抽出
名學(xué)生,并統(tǒng)計了她們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為
分),數(shù)學(xué)成績分組及各組頻數(shù)如下:
![]()
樣本頻率分布表:
分組 | 頻數(shù) | 頻率 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
合計 |
|
|
(1)在給出的樣本頻率分布表中,求
的值;
(2)估計成績在
分以上(含
分)學(xué)生的比例;
(3)為了幫助成績差的學(xué)生提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績在
的學(xué)生中選兩位同學(xué),共同幫助成績在
中的某一位同學(xué).已知甲同學(xué)的成績?yōu)?/span>
分,乙同學(xué)的成績?yōu)?/span>
分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】2016年一交警統(tǒng)計了某段路過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
車速 |
|
|
|
|
|
事故次數(shù) |
|
|
|
|
|
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關(guān)于
的線性回歸方程
;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測2017年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達到
時,可能發(fā)生的交通事故次數(shù).
(參考數(shù)據(jù):
)
[參考公式:
]
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】給出如下結(jié)論:
①函數(shù)
是奇函數(shù);
②存在實數(shù)
,使得
;
③若
是第一象限角且
,則
;
④
是函數(shù)
的一條對稱軸方程;
⑤函數(shù)
的圖形關(guān)于點
成中心對稱圖形.
其中正確的結(jié)論的序號是__________.(填序號)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com