科目: 來源: 題型:
【題目】已知
為△
所在平面外一點(diǎn),且
,
,
兩兩垂直,則下列結(jié)論:①
;②
;③
;④
.其中正確的是( )
A.①②③
B.①②④
C.②③④
D.①②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)y=f(x)對任意的x∈(﹣
,
)滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式成立的是 . ①
f(﹣
)<f(﹣
)
②
f(
)<f(
)
③f(0)>2f(
)
④f(0)>
f(
)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x+
(x>0)過點(diǎn)P(1,0)作曲線y=f(x)的兩條切線PM,PN,切點(diǎn)分別為M,N,設(shè)g(t)=|MN|,若對任意的正整數(shù)n,在區(qū)間[2,n+
]內(nèi),若存在m+1個數(shù)a1 , a2 , …am+1 , 使得不等式g(a1)+g(a2)+…g(am)<g(am+1),則m的最大值為( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線C在直角坐標(biāo)系xOy下的參數(shù)方程為
(θ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程; (Ⅱ)直線l的極坐標(biāo)方程是ρcos(θ﹣
)=3
,射線OT:θ=
(ρ>0)與曲線C交于A點(diǎn),與直線l交于B,求線段AB的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
. (Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù)
,若在[1,e]上至少存在一點(diǎn)x0 , 使得f(x0)≥g(x0)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:
+
=1(a>b>0)的離心率為
,其左、右焦點(diǎn)為F1、F2 , 點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=
,
=
,其中O為坐標(biāo)原點(diǎn).![]()
(1)求橢圓C的方程;
(2)如圖,過點(diǎn)S(0,﹣
)的動直線l交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=xex+ax2+2x+1在x=﹣1處取得極值.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)﹣m﹣1在[﹣2,2]上恰有兩個不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線方程為16x2﹣9y2=144.
(1)求該雙曲線的實(shí)軸長、虛軸長、離心率;
(2)若拋物線C的頂點(diǎn)是該雙曲線的中心,而焦點(diǎn)是其左頂點(diǎn),求拋物線C的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com