【題目】已知函數(shù)f(x)=x+
(x>0)過點(diǎn)P(1,0)作曲線y=f(x)的兩條切線PM,PN,切點(diǎn)分別為M,N,設(shè)g(t)=|MN|,若對(duì)任意的正整數(shù)n,在區(qū)間[2,n+
]內(nèi),若存在m+1個(gè)數(shù)a1 , a2 , …am+1 , 使得不等式g(a1)+g(a2)+…g(am)<g(am+1),則m的最大值為( )
A.5
B.6
C.7
D.8
【答案】B
【解析】解:設(shè)M、N兩點(diǎn)的橫坐標(biāo)分別為x1、x2,
∵f′(x)=1﹣
,
∴切線PM的方程為:y﹣(x1+
)=(1﹣
)(x﹣x1),
又∵切線PM過點(diǎn)P(1,0),∴有0﹣(x1+
)=(1﹣
)(1﹣x1),
即x12+2tx1﹣t=0,(1)
同理,由切線PN也過點(diǎn)P(1,0),得x22+2tx2﹣t=0.(2)
由(1)、(2),可得x1,x2是方程x2+2tx﹣t=0的兩根,
∴x1+x2=﹣2t,x1x2=﹣t(*)|MN|= ![]()
=
,
把(*)式代入,得|MN|=
,
因此,函數(shù)g(t)的表達(dá)式為g(t)=
,t>0,
知g(t)在區(qū)間[2,n+
]為增函數(shù),
∴g(2)≤g(ai)≤g(n+
)(i=1,2,m+1),
則mg(2)≤g(a1)+g(a2)+…+g(am)≤mg(n+
).
依題意,不等式mg(2)<g(n+
)對(duì)一切的正整數(shù)n恒成立,
m
<
,
即m<
對(duì)一切的正整數(shù)n恒成立.
∵n+
≥2
=16,∴
≥
=
,
∴m<
.由于m為正整數(shù),∴m≤6.
又當(dāng)m=6時(shí),存在a1=a2═am=2,am+1=16,對(duì)所有的n滿足條件.
因此,m的最大值為6.
故選:B.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一條光線從點(diǎn)A(3,2)發(fā)出,經(jīng)x軸反射后,通過點(diǎn)B(-1,6),求入射光線和反射光線所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在斜三棱柱
中,∠BAC=90°,BC1⊥AC,則點(diǎn)C1在平面ABC上的射影H必在( )![]()
A.直線AB上
B.直線BC上
C.直線AC上
D.△ABC的內(nèi)部
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)y1=
,y2=
,其中a>0,且a≠1,試確定x為何值時(shí),有:
(1)y1=y(tǒng)2;
(2)y1>y2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
為正方體,下面結(jié)論:①
平面
;②
;③
平面
.其中正確結(jié)論的個(gè)數(shù)是( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足Sn=2n﹣an(n∈N*). (Ⅰ)計(jì)算a1 , a2 , a3 , a4 , 并由此猜想通項(xiàng)公式an;
(Ⅱ)用數(shù)學(xué)歸納法證明(Ⅰ)中的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R),若函數(shù)y=f(x)ex在x=﹣1處取得極值,則下列圖象不可能為y=f(x)的圖象是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程x2+ax+2a=0有解;命題q:函數(shù)f(x)=
在R上是單調(diào)函數(shù).
(1)當(dāng)命題q為真命題時(shí),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)p為假命題,q為真命題時(shí),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
及圓
.
(1)設(shè)過點(diǎn)
的直線
與圓
交于
兩點(diǎn),當(dāng)
時(shí),求以線段
為直徑的圓
的方程;
(2)設(shè)直線
與圓
交于
兩點(diǎn),是否存在實(shí)數(shù)
,使得過點(diǎn)
的直線
垂直平分弦
?若存在,求出實(shí)數(shù)
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com