科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+6.
(1)當a=5時,解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+2x+c的對稱軸為x=1,g(x)=x+
(x>0).
(1)求函數(shù)g(x)的最小值及取得最小值時x的值;
(2)試確定c的取值范圍,使g(x)﹣f(x)=0至少有一個實根;
(3)若F(x)=﹣f(x)+4x+c,存在實數(shù)t,對任意x∈[1,m],使F(x+t)≤3x恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
()的焦距為4,左、右焦點分別為
,且
與拋物線
: ![]()
的交點所在的直線經(jīng)過
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過
的直線
與
交于
兩點,與拋物線
無公共點,求
的面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】設等比數(shù)列{an}的前項n和Sn , a2=
,且S1+
,S2 , S3成等差數(shù)列,數(shù)列{bn}滿足bn=2n.
(1)求數(shù)列{an}的通項公式;
(2)設cn=anbn , 若對任意n∈N+ , 不等式c1+c2+…+cn≥
λ+2Sn﹣1恒成立,求λ的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】小明同學在寒假社會實踐活動中,對白天平均氣溫與某家奶茶店的
品牌飲料銷量之間的關系進行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫
(
)與該奶茶店的
品牌飲料銷量
(杯),得到如表數(shù)據(jù):
日期 | 1月11號 | 1月12號 | 1月13號 | 1月14號 | 1月15號 |
平均氣溫 | 9 | 10 | 12 | 11 | 8 |
銷量 | 23 | 25 | 30 | 26 | 21 |
(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出
關于
的線性回歸方程式
;
(3)根據(jù)(2)所得的線性回歸方程,若天氣預報1月16號的白天平均氣溫為
,請預測該奶茶店這種飲料的銷量.
(參考公式:
,
)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線
,圓
,點
為拋物線
上的動點,
為坐標原點,線段
的中點
的軌跡為曲線
.
(1)求拋物線
的方程;
(2)點
是曲線
上的點,過點
作圓
的兩條切線,分別與
軸交于
兩點.
求
面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
.
(1)若曲線
在點
處的切線斜率為1,求函數(shù)
在
上的最值;
(2)令
,若
時,
恒成立,求實數(shù)
的取值范圍;
(3)當
且
時,證明
.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司即將推車一款新型智能手機,為了更好地對產(chǎn)品進行宣傳,需預估市民購買該款手機是否與年齡有關,現(xiàn)隨機抽取了50名市民進行購買意愿的問卷調查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調查結果用莖葉圖表示如圖所示.
![]()
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成
列聯(lián)表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?
購買意愿強 | 購買意愿弱 | 合計 | |
20~40歲 | |||
大于40歲 | |||
合計 |
(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,記抽到的2人中年齡大于40歲的市民人數(shù)為
,求
的分布列和數(shù)學期望.
附:
.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com