科目: 來源: 題型:
【題目】已知f(x)=lgx+1(1≤x≤100),則g(x)=f2(x)+f(x2)的值域為( )
A.[﹣2,7]
B.[2,7]
C.[﹣2,14]
D.[2,14]
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系
中,曲線
的方程為
,在以原點為極點,
軸的非負關軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)將
上的所有點的橫坐標和縱坐標分別伸長到原來的2倍和
倍后得到曲線
,求曲線
的參數(shù)方程;
(2)若
分別為曲線
與直線
的兩個動點,求
的最小值以及此時點
的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x),當x,y∈R時,恒有f(x+y)=f(x)+f(y).當x>0時,f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若f(1)=
,試求f(x)在區(qū)間[﹣2,6]上的最值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
,其中
為自然對數(shù)的底數(shù).
(Ⅰ)設
(其中
為
的導函數(shù)),判斷
在
上的單調性;
(Ⅱ)若
無零點,試確定正數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知指數(shù)函數(shù)f(x)=ax(a>0,a≠1).
(1)若f(x)的圖象過點(1,2),求其解析式;
(2)若
,且不等式g(x2+x)>g(3﹣x)成立,求實數(shù)x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】2017年某市街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或將共享單車占為“私有”等.為此,某機構就是否支持發(fā)展共享單車隨機調查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計如下表:
年齡 |
|
|
|
|
|
|
受訪人數(shù) | 5 | 6 | 15 | 9 | 10 | 5 |
支持發(fā)展共享單車人數(shù) | 4 | 5 | 12 | 9 | 7 | 3 |
(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填寫下面的
列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發(fā)展共享單車有關系:
年齡低于35歲 | 年齡不低于35歲 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(Ⅱ)若對年齡在
的被調查人中隨機選取兩人,對年齡在
的被調查人中隨機選取一人進行調查,求選中的3人中支持發(fā)展共享單車的人數(shù)為2人的概率.
參考數(shù)據(jù):
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:
,其中
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
的中心在坐標原點
,焦點在
軸上,橢圓
的短軸端點和焦點所組成的四邊形為正方形,且橢圓
上任意一點到兩個焦點的距離之和為
.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)若直線
與橢圓
相交于
兩點,求
面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市為了宣傳環(huán)保知識,舉辦了一次“環(huán)保知識知多少”的問卷調查活動(一人答一份).現(xiàn)從回收的年齡在
歲的問卷中隨機抽取了
份, 統(tǒng)計結果如下面的圖表所示.
![]()
![]()
(1)分別求出
的值;
(2)從年齡在
答對全卷的人中隨機抽取
人授予“環(huán)保之星”,求年齡在
的人中至少有
人被授予“環(huán)保之星”的概率.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com