科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x+
+b,其中a,b是常數(shù)且a>0.
(1)用函數(shù)單調(diào)性的定義證明f(x)在區(qū)間(0,
]上是單調(diào)遞減函數(shù);
(2)已知函數(shù)f(x)在區(qū)間[
,+∞)上是單調(diào)遞增函數(shù),且在區(qū)間[1,2]上f(x)的最大值為5,最小值為3,求a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了響應教育部頒布的《關于推進中小學生研學旅行的意見》,某校計劃開設八門研學旅行課程,并對全校學生的選課意向進行調(diào)查(調(diào)查要求全員參與,每個學生必須從八門課程中選出唯一一門課程).本次調(diào)查結果如下.
![]()
圖中,課程
為人文類課程,課程
為自然科學類課程.為進一步研究學生選課意向,結合上面圖表,采取分層抽樣方法從全校抽取1%的學生作為研究樣本組(以下簡稱“組
”).
(Ⅰ)在“組
”中,選擇人文類課程和自然科學類課程的人數(shù)各有多少?
(Ⅱ)某地舉辦自然科學營活動,學校要求:參加活動的學生只能是“組
”中選擇
課
程或
課程的同學,并且這些同學以自愿報名繳費的方式參加活動. 選擇
課程的學生中有
人參加科學營活動,每人需繳納
元,選擇
課程的學生中有
人參加該活動,每人需繳納
元.記選擇
課程和
課程的學生自愿報名人數(shù)的情況為
,參加活動的學生繳納費用總和為
元.
①當
時,寫出
的所有可能取值;
②若選擇
課程的同學都參加科學營活動,求
元的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學生在假期進行某種小商品的推銷,他利用所學知識進行了市場調(diào)查,發(fā)現(xiàn)這種商品當天的市場價格與他的進貨量(件)加上20成反比.已知這種商品每件進價為2元.他進100件這種商品時,當天賣完,利潤為100元.若每天的商品都能賣完,求這個學生一天的最大利潤是多少?獲得最大利潤時每天的進貨量是多少件?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐
的底面是邊長為
的正方形,
底面
,
分別為
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)若
,試問在線段
上是否存在點
,使得二面角
的余弦值為
?若存在,確定點
的位置;若不存在,請說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】對于無窮數(shù)列
,記
,若數(shù)列
滿足:“存在
,使得只要
(
且
),必有
”,則稱數(shù)列
具有性質
.
(Ⅰ)若數(shù)列
滿足
判斷數(shù)列
是否具有性質
?是否具有性質
?
(Ⅱ)求證:“
是有限集”是“數(shù)列
具有性質
”的必要不充分條件;
(Ⅲ)已知
是各項為正整數(shù)的數(shù)列,且
既具有性質
,又具有性質
,求證:存在整數(shù)
,使得
是等差數(shù)列.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合A={1,2,3},集合B={x|a+1<x<6a﹣1},其中a∈R.
(1)寫出集合A的所有真子集;
(2)若A∩B={3},求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動點
到點
和直線l:
的距離相等.
(Ⅰ)求動點
的軌跡E的方程;
(Ⅱ)已知不與
垂直的直線
與曲線E有唯一公共點A,且與直線
的交點為
,以AP為直徑作圓
.判斷點
和圓
的位置關系,并證明你的結論.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了響應教育部頒布的《關于推進中小學生研學旅行的意見》,某校計劃開設八門研學旅行課程,并對全校學生的選擇意向進行調(diào)查(調(diào)查要求全員參與,每個學生必須從八門課程中選出唯一一門課程).本次調(diào)查結果整理成條形圖如下.
![]()
上圖中,已知課程
為人文類課程,課程
為自然科學類課程.為進一步研究學生選課意向,結合上面圖表,采取分層抽樣方法從全校抽取
的學生作為研究樣本組(以下簡稱“組M”).
(Ⅰ)在“組M”中,選擇人文類課程和自然科學類課程的人數(shù)各有多少?
(Ⅱ)為參加某地舉辦的自然科學營活動,從“組M”所有選擇自然科學類課程的同學中隨機抽取4名同學前往,其中選擇課程F或課程H的同學參加本次活動,費用為每人1500元,選擇課程G的同學參加,費用為每人2000元.
(ⅰ)設隨機變量
表示選出的4名同學中選擇課程
的人數(shù),求隨機變量
的分布列;
(ⅱ)設隨機變量
表示選出的4名同學參加科學營的費用總和,求隨機變量
的期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,三棱錐
,側棱
,底面三角形
為正三角形,邊長為
,頂點
在平面
上的射影為
,有
,且
.
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)線段
上是否存在點
使得
⊥平面
,如果存在,求
的值;如果不存在,請說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=
(x∈R),e是自然對數(shù)的底.
(1)計算f(ln2)的值;
(2)證明函數(shù)f(x)是奇函數(shù).
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com