科目: 來源: 題型:
【題目】已知橢圓
經(jīng)過點
,且離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)
是橢圓上的點,直線
與
(
為坐標(biāo)原點)的斜率之積為
.若動點
滿足
,試探究是否存在兩個定點
,使得
為定值?若存在,求
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于定義在
上的函數(shù)
,若存在距離為
的兩條直線
和
,使得對任意
都有
恒成立,則稱函數(shù)
有一個寬度為
的通道,給出下列函數(shù):①
;②
;③
;④
.其中在區(qū)間
上通道寬度可以為1的函數(shù)的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著人口老齡化的到來,我國的勞動力人口在不斷減少,“延遲退休”已經(jīng)成為人們越來越關(guān)心的話題,為了解公眾對“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機(jī)抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:
年齡 |
|
|
|
|
|
人數(shù) | 4 | 5 | 8 | 5 | 3 |
年齡 |
|
|
|
|
|
人數(shù) | 6 | 7 | 3 | 5 | 4 |
經(jīng)調(diào)查年齡在
,
的被調(diào)查者中贊成“延遲退休”的人數(shù)分別是3人和2人,現(xiàn)從這兩組的被調(diào)查者中各隨機(jī)選取2人,進(jìn)行跟蹤調(diào)查.
(Ⅰ)求年齡在
的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;
(Ⅱ)若選中的4人中,不贊成“延遲退休”的人數(shù)為
,求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱該數(shù)集為“可倒數(shù)集”.
(1)判斷集合A={-1,1,2}是否為可倒數(shù)集;
(2)試寫出一個含3個元素的可倒數(shù)集.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著網(wǎng)絡(luò)的發(fā)展,人們可以在網(wǎng)絡(luò)上購物、玩游戲、聊天、導(dǎo)航等,所以人們對上網(wǎng)流量的需求越來越大。某電信運(yùn)營商推出一款新的“流量包”套餐.為了調(diào)查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機(jī)抽取50個用戶按年齡分組進(jìn)行訪談,統(tǒng)計結(jié)果如下表.
組號 | 年齡 | 訪談人數(shù) | 愿意使用 |
1 | [20,30) | 5 | 5 |
2 | [30.40) | 10 | 10 |
3 | [40.50) | 15 | 12 |
4 | [50.60) | 14 | 8 |
5 | [60,70) | 6 | 2 |
(1)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取15人,則各組應(yīng)分別抽取多少人?
(2)若從第5組的被調(diào)查者訪談人中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.
(3)按以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷以50歲為分界點,能否在犯錯誤不超過1%的前提下認(rèn)為是否愿意選擇此款“流量包”套餐與人的年齡有關(guān);
年齡不低于50歲的人數(shù) | 年齡低于50歲的人數(shù) | 合計 | |||||
愿意使用的人數(shù) | |||||||
不愿意使用的人數(shù) | |||||||
合計 |
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=b·ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過點A(1,6),B(3,24).
(1)求f(x);
(2)若不等式
-m≥0在x∈(-∞,1]時恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC的三個內(nèi)角A、B、C所對的邊分別是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大;
(2)若b=
,求a+c的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的前三項與數(shù)列{bn}的前三項相同,且a1+2a2+22a3+…+2n-1an=8n對任意n∈N*都成立,數(shù)列{bn+1-bn}是等差數(shù)列.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)是否存在k∈N*,使得(bk-ak)∈(0,1)?請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com