欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習(xí)題
 0  240651  240659  240665  240669  240675  240677  240681  240687  240689  240695  240701  240705  240707  240711  240717  240719  240725  240729  240731  240735  240737  240741  240743  240745  240746  240747  240749  240750  240751  240753  240755  240759  240761  240765  240767  240771  240777  240779  240785  240789  240791  240795  240801  240807  240809  240815  240819  240821  240827  240831  240837  240845  266669 

科目: 來源: 題型:解答題

15.如圖,在平面直角坐標(biāo)系xOy中,邊長為1的正△OAB的頂點(diǎn)A,B均在第一象限,設(shè)點(diǎn)A在x軸的射影為C,∠AOC=α.
(1)試將$\overrightarrow{OA}$•$\overrightarrow{CB}$表示α的函數(shù)f(α),并寫出其定義域;
(2)求函數(shù)f(α)的值域.

查看答案和解析>>

科目: 來源: 題型:解答題

14.在四棱錐P-ABCD中,已知DC∥AB,DC=2AB,E為棱PD的中點(diǎn).
(1)求證:AE∥平面PBC;
(2)若PB⊥PC,PB⊥AB,求證:平面PAB⊥平面PCD.

查看答案和解析>>

科目: 來源: 題型:填空題

13.如圖,已知正三棱柱ABC-A1B1C1的所有棱長均為2,△DEF為平行于棱柱底面的截面,O1,O分別為上、下底面內(nèi)一點(diǎn),則六面體O1DEFO的體積為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知兩曲線f(x)=cosx與g(x)=$\sqrt{3}$sinx的一個(gè)交點(diǎn)為P,則點(diǎn)P到x軸的距離為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知直線x-y=0與圓(x-2)2+y2=6相交于A,B兩點(diǎn),則弦AB的長為4.

查看答案和解析>>

科目: 來源: 題型:填空題

10.設(shè)集合A={1,2},B=(a+1,2),若A∪B={1,2,3},則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是$\widehat{DF}$的中點(diǎn).
(Ⅰ)設(shè)P是$\widehat{CE}$上的一點(diǎn),且AP⊥BE,求∠CBP的大;
(Ⅱ)當(dāng)AB=3,AD=2,求二面角E-AG-C的大小.

查看答案和解析>>

科目: 來源: 題型:解答題

8.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知$\frac{{S}_{n}}{2}$=an-2n(n∈N*).
(1)求a1的值,若an=2ncn,證明數(shù)列{cn}是等差數(shù)列;
(2)設(shè)bn=log2an-log2(n+1),數(shù)列{$\frac{1}{_{n}}$}的前n項(xiàng)和為Bn,若存在整數(shù)m,使對(duì)任意n∈N*且n≥2,都有B3n-Bn>$\frac{m}{20}$成立,求m的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,過點(diǎn)E(1,0)的直線與圓O:x2+y2=4相交于A、B兩點(diǎn),過點(diǎn)C(2,0)且與AB垂直的直線與圓O的另一交點(diǎn)為D.
(1)當(dāng)點(diǎn)B坐標(biāo)為(0,-2)時(shí),求直線CD的方程;
(2)求四邊形ABCD面積S的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知數(shù)列{an}滿足an=n2+n,設(shè)bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+2}}$+…+$\frac{1}{{a}_{2n}}$.
(1)求{bn}的通項(xiàng)公式;
(2)若對(duì)任意的正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+$\frac{1}{6}$>bn恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案