欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習題
 0  225968  225976  225982  225986  225992  225994  225998  226004  226006  226012  226018  226022  226024  226028  226034  226036  226042  226046  226048  226052  226054  226058  226060  226062  226063  226064  226066  226067  226068  226070  226072  226076  226078  226082  226084  226088  226094  226096  226102  226106  226108  226112  226118  226124  226126  226132  226136  226138  226144  226148  226154  226162  266669 

科目: 來源: 題型:選擇題

13.已知邊長為3的正三角形ABC的三個頂點都在半徑為2的球O的球面上,則點O到平面ABC的距離為( 。
A.1B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,四邊形ABCD內(nèi)接于⊙O,過點A作⊙O的切錢EP交CB 的延長線于P,己知∠PAB=25°.
(1)若BC是⊙O的直徑,求∠D的大小;
(2)若∠DAE=25°,求證:DA2=DC•BP.

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,正四面體ABCD的棱長為1.
(1)求異面直線AB、CD之間的距離;
(2)求點A到平面BCD的距離;
(3)求點E到平面ACD的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知,如圖正方形ABCD的邊長為4,CG⊥平面ABCD,CG=2,E、F分別是AB,AD的中點.
(1)求證:EF⊥GH;
(2)求點C到平面GEF的距離;
(3)求直線BD到平面GEF的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點F,且點F在CE上.
(Ⅰ)求證:AE⊥BE;
(Ⅱ)求點F到平面ABC的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

8.在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD為菱形,O為A1C1與B1D1的交點,已知AA1=AB=1,∠BAD=60°.
(1)求證:平面A1BC1⊥平面B1BDD1;
(2)求點O到平面BC1D的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,△ABC是直角三角形,∠ABC=90°,AP⊥平面ABC,且AP=AB,點D是PB的中點,點E是PC上的一點,
(1)當DE∥BC時,求證:直線PB⊥平面ADE;
(2)當DE⊥PC時,求證:直線PC⊥平面ADE;
(3)當AB=BC時,求二面角A-PC-B的大。

查看答案和解析>>

科目: 來源: 題型:選擇題

6.過點(2,-2)且以$y=±\frac{{\sqrt{2}}}{2}x$為漸近線的雙曲線方程是( 。
A.$\frac{y^2}{2}-\frac{x^2}{4}=1$B.$\frac{x^2}{4}-\frac{y^2}{2}=1$C.$\frac{y^2}{4}-\frac{x^2}{2}=1$D.$\frac{x^2}{2}-\frac{y^2}{4}=1$

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知正三棱柱ABC-A1B1C1中,AB=2,AA1=$\sqrt{3}$,點D為AC的中點,點E在線段AA1上.
(Ⅰ)當E為AA1中點時,求證:ED∥平面A1B1C1
(Ⅱ)當$\frac{AE}{E{A}_{1}}$為何值時,點A到平面BDE的距離為$\frac{1}{2}$?

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=$\frac{1}{2}$AB=2,點E為AC中點.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.
(Ⅰ)若F是CD的中點,證明:AD∥平面EFB;
(Ⅱ)求三棱錐C-ABD的體積.

查看答案和解析>>

同步練習冊答案